Advertisement

Interceram - International Ceramic Review

, Volume 64, Issue 3, pp 104–107 | Cite as

In-Situ Reactions and Properties of Alumina-Magnesia Refractory Castables with Addition of TiO2

  • W. J. Yuan
  • Q. Y. Zhu
  • C. J. Deng
  • H. X. Zhu
Special Technologies

Abstract

In the present work, the phase composition, apparent porosity, permanent linear change and microstructure were examined in castables containing 0–2 mass-% of TiO2 with and without magnesia to investigate the effect of TiO2 on in-situ reactions and properties in alumina-magnesia refractory castables after calcination at 1450°C/5 h. The results show that the addition of TiO2 can modify in-situ reactions and sintering processes. The amounts of spinel and calcium hexaaluminate (CA6) formed in overall castables increased with TiO2 addition, and the grain size of CA6 decreased gradually. The difference of the phase composition in overall and the matrix of castables indicated that the aggregates were involved in the CA6 formation. The permanent linear change and cold modulus of rupture of castables were dependent on TiO2 addition. For design of alumina-magnesia refractory castables, TiO2 could be used as an alternative to achieve good strength and certain expansion.

Keywords

castables TiO2 spinel calcium hexaaluminate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen, S.K., Cheng, M.Y., Lin, S.J., Ko, Y.C.: Thermal characteristics of Al2O3-MgO and Al2O3-spinel castables for steel ladles. Ceram. Internat. 28 (2002) [7] 811–817CrossRefGoogle Scholar
  2. [2]
    Schacht, C.A.: Refractories Handbook. Marcel Dekker, Inc., New York, (2004)CrossRefGoogle Scholar
  3. [3]
    Braulio, M.A.L., Milanez, D.H., Sako, E.Y., Bittencourt, L.R.M., Pandolfelli, V.C.: Expansion behavior of cement-bonded alumina-magnesia refractory castables. Amer. Ceram. Soc. Bull. 86 (2007) [12] 9201–9209Google Scholar
  4. [4]
    Braulio, M.A.L., Rigaud, M., Buhr, A., Parr C., Pandolfelli, V.C.: Spinel-containing alumina-based refractory castables. Ceram. Internat.. 37 (2011) [6] 1705–1724CrossRefGoogle Scholar
  5. [5]
    Yuan, W.J., Zhu, Q.Y., Deng, C.J., Zhu, H.X.: Effects of SnO2 addition on the properties of alumina-magnesia refractory castables. N. J. Glass Ceram. 5 (2015) [1] 1–7CrossRefGoogle Scholar
  6. [6]
    Braulio, M.A.L., Pandolfelli, V.C.: Tailoring the microstructure of cement-bonded alumina-magnesia refractory castables. J. Amer. Ceram. Soc. 93 (2010) [10] 2981–2985CrossRefGoogle Scholar
  7. [7]
    Snyder, R.L.: The use of reference intensity ratios in X-ray quantitative analysis. Powder Diffr. 7 (1992) [4] 186–193CrossRefGoogle Scholar
  8. [8]
    Sako, E.Y., Braulio, M.A.L., Milanez, D.H., Brant, P.O., Pandolfelli, V.C.: The expansive behavior of alumina-spinel castables with microsilica addition. UNITECER’09, Salvador, Brazil, (2009) 34Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • W. J. Yuan
    • 1
  • Q. Y. Zhu
    • 1
  • C. J. Deng
    • 1
  • H. X. Zhu
    • 1
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations