Advertisement

Effect of Nickel and Cobalt Doping on Nano Bismuth Ferrite Prepared by the Chemical Route

  • S. Mukherjee
  • K. Sarkar
  • S. Mukherjee
High-Performance Ceramics

Abstract

Bismuth ferrite is an important multiferroic single-phase material with a distorted perovskite structure with Tc = 1100 K (Curie temperature), Tn = 640 K (Neel temperature) coupled with ferroelectric properties and spin-cycloid ferromagnetic properties. Undoped as well as doped bismuth ferrites are prepared from precursor salts via a chemical route and then calcinated at 300°C and sintered at 500°C for a fixed time interval of 30 min. Phase purity of the synthesized samples is investigated with an X-ray diffractometer. Crystallite sizes, calculated using Scherrer’s relation, are found to be in a range between 15 and 50 nm for both undoped and doped samples. FESEM images of the synthesized material reveal a microstructural morphology.

An agglomeration tendency in certain regions with polyhedral morphology is observed. EDX analysis confirmed Co and Ni doping in the bismuth ferrite. Optical properties, mainly band gap of undoped, Ni- and Co-doped BFO are examined with UV-VIS spectra using the Tauc relation. A P-E loop is obtained for both undoped and transitional-metal-doped BFO samples. The characteristics of the P-E loop shows different behaviors for the undoped and doped BFO samples confirming both the doping and its effect on the system. Dielectric measurements are also carried out for both undoped and transitional-metal-doped BFO samples.

Keywords

bismuth ferrite Ni and Co doping XRD FESEM UV-VIS P-E loop 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Pullar, C.R.: Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progr. in Materials Science. 57 (2012) 1191–1334CrossRefGoogle Scholar
  2. [2]
    Eerenstein, W., Mathur, N.D., Scott, J.F.: Multiferroic and magnetoelectric materials. Nature. 442 (2006) 759–765CrossRefGoogle Scholar
  3. [3]
    De Chang Jia. De., Huan Xu, Jian., Hua Ke., Wang Wen., Zhou Yu.: Structure and multiferroic properties of BiFeO3 powders. J. Europ. Ceram. Soc. 29 (2009) 3099–3103CrossRefGoogle Scholar
  4. [4]
    Choi Ji. Eun., Kim Su. Sang., Kim Won. Jin., Park Heum. Moon., Cho Kyung. Hyun., Kim Jeong-Won., Yi Seungwoo., Yoo Dongsun.: Ferroelectric properties of (La, Mn)-Codoped BiFeO3 Thin Films Prepared by Chemical Solution deposition. J. Kor. Phy. Soc. 51 (2007) S138–S142CrossRefGoogle Scholar
  5. [5]
    Singh, K.S., Maruyama, K., Ishiwara, H.: Reduced leakage current in La and Ni codoped BiFeO3 thin films. Appl. Phys. Lett. 91 (2007) 112913–112913–3CrossRefGoogle Scholar
  6. [6]
    Biasotto Glenda, Simoes Z. Alexandre, Foschino R. Cesar, Antônio G. Selma., Zaghete A. Maria, Varela A. Jose: A novel synthesis of perovskite bismuth ferrite nanoparticles. Process. Appl. Cer. 5 (2011) [3] 171–179CrossRefGoogle Scholar
  7. [7]
    Eerenstein, W., Mathur, D.N., Scott, F.J.: Multiferroic and magnetoelectric materials. Nat. 442 (2006) 759–765CrossRefGoogle Scholar
  8. [8]
    Lu J., Qiao J. L., Fu Z. P., Wu C. P.: Phase equilibrium of Bi2O3-Fe2O3 pseudo-binary system and growth of BiFeO3 single crystal. J. Cryst. Growth. 318 (2011) 936–941CrossRefGoogle Scholar
  9. [9]
    Kharel, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, M.V., Sahana, B.M., Sudakar, C., Naik, R., Rao, M.S.R., Lawes, G.: Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys: Cond. Matt. 21 (2009) 1–6Google Scholar
  10. [10]
    Kumar, A., Yadav, L.K.: A systematic study on magnetic, dielectric and magnetocapacitance properties of Ni doped bismuth ferrite. J. Phys. Chem. Solids. 72 (2011) [11] 1189–1194CrossRefGoogle Scholar
  11. [11]
    Azough, F., Freer, R., Thrall, M., Cernik, R., Tuna, F., Collison, D.: Microstucture and properties of Co, Ni, Zn, Nb and W-modified multiferroic BiFeO3 ceramics. J. Europ. Ceram. Soc. 30 (2010) 727–736CrossRefGoogle Scholar
  12. [12]
    Isfahani, N.J.M., Isfahani, N.P., Da Silva, L.K., Feldhoff, A., Šepelák, V.: Structural and magnetic properties of NiFe2−xBixO4 nanoparticles prepared via sol-gel method. Cer. Inter. 37 (2011) 1905–1909CrossRefGoogle Scholar
  13. [13]
    Kharel, P., Talebi, S., Ramachandran, B., Dixit, A., Naik, M.V., Sahana, B.M., Sudakar, C., Naik, R., Rao, M.S.R., Lawes, G.: Structural, magnetic, and electrical studies on polycrystalline transition-metal-doped BiFeO3 thin films. J. Phys:Cond. Matt. 21 (2009) 036001 1–6Google Scholar
  14. [14]
    Kawae, T., Terauchi, Y., Tsuda, H., Kumeda, M., Morimoto, A.: Improved leakage and ferroelectric properties of Mn and Ti codoped BiFeO3 thin films. Appl. Phys. Lett. 94 (2009) 112904-1 to 112904-3CrossRefGoogle Scholar
  15. [15]
    Mishra K. Dilip, Qi Xiaoding.: Energy levels and photoluminescence properties of nickel-doped bismuth ferrite. J. Alloys. Compds. 504 (2010) 27–31CrossRefGoogle Scholar
  16. [16]
    Kumar, A., Rai, C.R., Podraza, J.N., Denev, S., Ramirez, M., Chu, H.-Y., Martin, W.L., Ihlefeld J., Heeg, T., Schubert, J., Schlom, G.D., Orenstein, J., Ramesh, R., Collins, W.R., Musfeldt, L.J., Gopalan, V.: Linear and nonlinear optical properties of BiFeO3. Appl. Phys. Lett. 92 (2008) 121915-1 to 121915-3Google Scholar
  17. [17]
    Mukherjee, S., Chakraborty, S., Mukherjee, S.: A comparative study of pure and rare earth transitional metal doped bismuth ferrite. Int. J. Curr. Engg. Tech. 2 (2012) [4] 403–408Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.Department of Metallurgical and Material EnggJadavpur UniversityKolkataIndia
  2. 2.School of Material Science and NanotechnologyJadavpur UniversityKolkataIndia

Personalised recommendations