Advertisement

Preparation and Characterization of Anorthite-Alumina Composites

  • S. M. Naga
  • H. F. El-Maghraby
  • A. A. Aly
High-Performance Ceramics

Abstract

Anorthite powder prepared using sugar beet industry by-product and El-Tieh kaolin from Sinai, Egypt, was used to prepare anorthite-alumina composites. The physical and mechanical properties of the composites were studied as a function of the amount of added Al2O3. The phase composition and microstructure of composites containing various Al2O3 content (from 5 to 20 mass-%) were analysed. The results reveal that increases in Al2O3 content improve both the bulk density and the bending strength of the composite materials.

Keywords

anorthite alumina sugar beet composites 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kobayashi, Y., Kato, E.: Low-temperature fabrication of Anorthite ceramics. J Amer. Ceram. Soc. 77 (1994) [3] 833–834CrossRefGoogle Scholar
  2. [2]
    Kurama, S., Ozel, E.: The influence of different CaO source in the production of anorthite ceramics. Ceram Internat. 35 (2009) 827–830CrossRefGoogle Scholar
  3. [3]
    El-Maghraby, A., Mobarak, H.A., Bakr, I., Mörtel, H., Naga, S.M.: Anorthite ceramics based on plagioclases concentrated from gabbro. CIMTEC, 10th International Ceramics Congress & 3rd Forum on New Materials, Italy, 14–18 July (2002)Google Scholar
  4. [4]
    Sutcu, M., Akkurt, S.: Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics. J Europ. Ceram. Soc. 30 (2010) 1785–1793CrossRefGoogle Scholar
  5. [5]
    Wendt, A.S., Olgaard, D.L., Mainprice, D.: A technique for the fabrication of fully dense Ca-rich plagioclase (An70-An100) samples suitable for studying the plastic rheology of bytownite (An80). J Mater. Sci. 34 (1999) 5733–5742CrossRefGoogle Scholar
  6. [6]
    Brennen, J.J., Prewo, K.M.: Silicon carbide-fiber-reinforced glass-ceramic-matrix composites exhibiting high strength and toughness. J. Mater. Sci. 17 (1982) 371–383CrossRefGoogle Scholar
  7. [7]
    Sung, Y.M., Hwang, S.J.: Microstructural analysis of the calcium aluminosilicate (CAS) glass-ceramic matrix in SiCf/CAS composites deformed at a high temperature. J. Mater. Sci. 33 (1998) 5255–5258CrossRefGoogle Scholar
  8. [8]
    Lo, C.L., Duh, J.G., Chiou, B.S.: Low temperature sintering and crystallization behavior of low loss anorthite-based glass-ceramics. J. Mater. Sci. 38 (2003) 693–698CrossRefGoogle Scholar
  9. [9]
    He, L., Xia, G., Yang, D.: Synthesis and characterization of LTCC composites based on the spodumene-anorthite-crystallizable glass. J. Alloys Compd. 556 (2013) 12–19CrossRefGoogle Scholar
  10. [10]
    Nair, B.G., Zhao, Q., Cooper, R.F.: Geopolymer matrices with improved hydrothermal corrosion resistance for high-temperature applications. J. Mater. Sci. 42 (2007) 3083–3091CrossRefGoogle Scholar
  11. [11]
    Tsetsekou, A.: A comparison study of tialite ceramics doped with various oxide materials and tialite-mullite composites: microstructural, thermal and mechanical properties. J. Europ. Ceram. Soc. 25 (2005) 335–348CrossRefGoogle Scholar
  12. [12]
    Orlova, L.A., Popovich, N.V., Uvarova, N.E., Paleari, A., Sarkisov, P.D.: High-temperature resistant glass-ceramics based on Sr-anorthite and tialite phases. Ceram. Internat. 38 (2012) 6629–6634CrossRefGoogle Scholar
  13. [13]
    Agathopoulos, S., Tulyaganov, D.U., Marques, P.A.A.P., Ferro, M.C., Fernandes, M.H.V., Correia, R.N.: The fluorapatite-anorthite system in biomedicine. Biomater. 24 (2003) 1317–1331CrossRefGoogle Scholar
  14. [14]
    El-Maghraby, H.F., Aly, A.A., Naga, S.M.: Utilization of sugar-beet industry by product for the production of anorthite. Interceram (2013) [6] 426–428Google Scholar
  15. [15]
    Kingery, W.D., Bowen, H.K., Uhlmann, D.R.: Introduction to ceramics. Wiley Interscience, New York (1976)Google Scholar
  16. [16]
    Wei, W.H., Halloran, J.W.: Phase transformation of diphasic aluminosilicate gels. J. Amer. Ceram. Soc. 71 (1988) 166–172CrossRefGoogle Scholar
  17. [17]
    Kara, F., Little, J.A.: Sintering behavior of pre-mullite powder obtained by chemical processing. J. Mater. Sci. 28 (1993) 1323–1326CrossRefGoogle Scholar
  18. [18]
    Kim, G.H., Sohn, I.I.: Effect of Al2O3 on the viscosity and structure of calcium silicate — based melts containing Na2O and CaF2. J. Non Crys. Solids 385 (2012) 1530–1537CrossRefGoogle Scholar
  19. [19]
    Kim, S.W., Chung, W.S., Sohn, K.S., Son, C.Y., Lee, S.: Improvement of flexure strength and fracture toughness in alumina matrix composites reinforced with carbon nanotubes. Mater. Sci. Eng. A517 (2009) 293–299CrossRefGoogle Scholar
  20. [20]
    Du, M., Bi, J.Q., Wang, W.L., Sun, X.L., Long, N.N., Bai, Y.J.: Fabrication and mechanical properties of SiO2-Al2O3-BNNPs and SiO2-Al2O3-BNNTs composites. Mater. Sci. Eng. A530 (2011) 669–674CrossRefGoogle Scholar
  21. [21]
    Tai, W.P., Kimura, K., Jinnai, K.: A new approach to anorthite porcelain bodies using nonplastic raw materials. J. Europ. Ceram. Soc. 22 (2002) 463–470CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.Ceramic DepartmentNational Research CentreGizaEgypt
  2. 2.Delta Sugar CompanyKafr El-ShaikhEgypt

Personalised recommendations