Advertisement

Interceram - International Ceramic Review

, Volume 63, Issue 7–8, pp 382–385 | Cite as

Structural and Optical Properties of Ti4+ Doped Sintered ZnAl2O4 Ceramics

  • P. K. Haldar
  • S. Dey
  • S. Mukhopadhyay
  • T. K. Parya
High-Performance Ceramics

Abstract

The sintering characteristics, phase composition, microstructure and optical properties of 1:1 ZnAl2O4 spinel doped with Ti4+ from 1.125 to 4.5 mole-% synthesized through coprecipitation were investigated in this study. Effective densification was achieved at a low sintering temperature, 1350°C after 1 h. Powder XRD patterns revealed that, besides ZnAl2O4 spinel and rutile as major crystalline phases, minor Zn2Ti3O8 phase was present in the sintered system, with its extent depending on the TiO2 content and sintering temperature. SEM micrographs demonstrated a coherent and uniformly distributed fine-grained microstructure in the fracture surfaces of the sintered Ti4+ doped ZnAl2O4 spinel ceramics body.

The Tauc plot of Ti4+ doped ZnAl2O4 spinel exhibited a leftward shift of the band gap from 3.79 to 3.48 eV with increase of Ti4+ content from 0 to 4.5 mole-%. Ti4+ was observed to function as a normal grain growth accelerator during ZnAl2O4 sintering. This was probably due to enhanced grain boundary diffusion.

Keywords

ZnAl2O4 based ceramics Ti4+ doping sintering optical properties Tauc band gap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sampath, S.K., Kanhere, D.G., Pandey, R.: Electronic structure of spinel oxides: zinc aluminate and zinc gallate. J. Phys. Condens. Mater. 11 (1999) 3635–3644CrossRefGoogle Scholar
  2. [2]
    Dutta, D.P., Ghildiyal, R., Tyagi A. K.: Luminescent properties of doped zinc aluminate and zinc gallate — white light emitting nanophosphors prepared via sonochemical method. J. Phys. Chem. C.113 (2009) [39] 16954–16961Google Scholar
  3. [3]
    Zawadzki, M., Wrzyszcz, J., Strek, W., Hreniak, D.: Preparation and optical properties of nanocrystalline and nanoporous tb doped alumina and zinc aluminate. J. Alloys. Comp. 323 (2001) 279–282CrossRefGoogle Scholar
  4. [4]
    Miron, I., Enache, C., Grozescu, I.: Dopped zinc aluminate spinel synthesised by hydrothermal method. Digest Journal of Nanomaterials and Biostructures 7 (2012) [3] 967–972Google Scholar
  5. [5]
    Kumar, K., Ramamoorthy, K., Koinkar, P.M., Chandramohan, R., Sankaranarayanan, K.: A Novel in situ synthesis and growth of ZnAl2O4 thin films. J. Crystal Growth 289 (2006) 405–407CrossRefGoogle Scholar
  6. [6]
    Haldar, P.K., Mukhopadhyay, S., Parya, T.K.: Thermal behaviour of coprecipitated zinc-aluminium hydroxide gels. Part 1. Interceram 60 (2011) [5] 292–295Google Scholar
  7. [7]
    Muhammad Abdul Jamal, E., Sakti Kumar, D., Anantharaman, M.R.: On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull. Mater. Sci. 34 (2011) [2] 251–259CrossRefGoogle Scholar
  8. [8]
    Adak, A.K., Pathak, A., Pramanik, P.: Characterization of ZnAl2O4 nanocrystals prepared by the polyvinyl alcohol evaporation route. J. Mat. Sci. Lett. 17 (1998) 559–561CrossRefGoogle Scholar
  9. [9]
    Kloprogge, J.T., Frost, R.L., Hickey, L.: FT-Raman and FT-IR spectroscopic study of the local structure of synthetic Mg/Zn/Al-hydrotalcites. J. Raman Spectroscopy. 35 (2004) 967–974CrossRefGoogle Scholar
  10. [10]
    Gadsen, J.A.: Infrared spectra of minerals and related inorganic compounds. Butterworths London (1975) 116, ISBN 10: 0408706651Google Scholar
  11. [11]
    Farmer, V.C.: The Infrared Spectra of Minerals. Mineralogical Society, London (1974) 189–197, ISBN 10: 0903056054CrossRefGoogle Scholar
  12. [12]
    Lei, W., Lu, W.Z., Wang, X.C., Wan, S.: Synthesis of (1−x) ZnAl2O4−xTiO2 microwave dielectric ceramics by moltensalt process. J. Alloys Comp. 508 (2010) [2] 507–511CrossRefGoogle Scholar
  13. [13]
    Haldar, P.K., Mukhopadhyay, S., Parya, T.K.: Structural and dielectric properties of sintered ZnAl2O4 ceramics. Interceram. 61 (2012) [6] 363–366Google Scholar
  14. [14]
    Minami, T., Sato, H., Ohashi, K., Tomofuji, T., Takata, S.: Conduction mechanism of highly conductive and transparent zinc oxide thin films prepared by magnetron sputtering. J. Cryst. Growth 117 (1992) 370–374CrossRefGoogle Scholar
  15. [15]
    Lei, W., Lu, W.Z., Zhu, J.H., Wang, X.H.: Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Mater. Lett. 61 (2007) 4066–4069CrossRefGoogle Scholar
  16. [16]
    Van Dijken, A., Makkinje, J., Meijerink, A.: The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles. J. Lumin. 92 (2001) [4] 323–328CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • P. K. Haldar
    • 1
  • S. Dey
    • 1
  • S. Mukhopadhyay
    • 1
  • T. K. Parya
    • 1
  1. 1.Ceramic Engineering Division, Dept. of Chemical TechnologyUniversity of CalcuttaKolkataIndia

Personalised recommendations