Advertisement

Interceram - International Ceramic Review

, Volume 63, Issue 7–8, pp 368–371 | Cite as

Study of Spinel-Containing High Alumina Castable with Different Cements

  • R. Sarkar
  • A. Sharma
Refractories

Abstract

High alumina castable with presynthesized and in situ spinel formation is studied using two different lime-containing high alumina cements. Vibratable castable compositions were studied by conventional processing, using a distribution coefficient of 0.29 and heat treatments at 110, 900, and 1500°C. Slightly lower density and strength values were found for in situ spinel-forming compositions and spinel formation was observed to start around 900°C and near completion at 1500°C in the matrix of the castables.

Keywords

refractories castable steelmaking high alumina cements magnesium aluminate spinel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Maschio, R.D., Fabbri, B., Fiori, C.: Industrial applications of refractories containing magnesium aluminate spinel. Indust. Ceram. 8 (1988) [2] 121–126Google Scholar
  2. [2]
    Sarkar, R.: Refractory applications of magnesium aluminate spinel. Interceram — Refractories Manual (2010) 11–14Google Scholar
  3. [3]
    Racher, P.R., McConnell, R.W., Buhr, A.: Magnesium aluminate spinel raw materials for high performance refractories for steel ladles. Proc. 43rd Conf. of Metallurgy, Hamilton, Canada (2004)Google Scholar
  4. [4]
    Naigai, B., Matsumoto, O., Isobe, T., Nishiumi, Y.: Wear mechanism of castable for steel ladle by slag. Taik. Overs. 12 (1992) [1] 15–20Google Scholar
  5. [5]
    Yamamura, T., Kubota, Y., Kaneshige, T., Nanba, M.: Effect of spinel clinker composition on properties of alumina-spinel castable. Taik. Overs. 13 (1994) 39–45Google Scholar
  6. [6]
    Ko, Y.C.: Properties and production of Al2O3-Spinel and Al2O3-MgO castables for steel ladles. Ceram. News 6 (2002) [1] 51–56Google Scholar
  7. [7]
    Díaz, L.A., Torrecillas, R., de Azab, A.H., Pena, P.: Effect of spinel content on slag attack resistance of high alumina refractory castables. J. Europ. Ceram. Soc. 27 (2007) 4623–4631CrossRefGoogle Scholar
  8. [8]
    Sumimura, S., Yamamura, T., Cubata, Y., Kanashige, T.: Study on slag penetration of alumina-spinel castable. Proc. UNITECR 1993, Sao Paulo (Brazil), 97–101Google Scholar
  9. [9]
    Nakashima, M., Isobe, T., Itose, S., Touno, A., Shimizu, I.: Improving the corrosion resistance of alumina-spinel castable by spinel additions. J. Techn. Assoc. Refract. Jpn., 21 (2001) [3] 155–161Google Scholar
  10. [10]
    Ko, Y.C.: Influence of the characteristics of spinels on the slag resistance of Al2O3-MgO and Al2O3-spinel castables. J. Am. Ceram. Soc., 83 (2000) [9] 2333–2335CrossRefGoogle Scholar
  11. [11]
    Shima, K., Imaiida, Y., Katani, T.: Application of alumina-spinel castable to teeming ladle for stainless steel. Taik. Overs. 15 (1995) [3] 24–28Google Scholar
  12. [12]
    Brandao, P., Goncalves, G.E., Duarte, A.K.: Mechanisms of hydration/carbonation of basic refractories. Refract. Appl. 3 (1998) [2] 6–8Google Scholar
  13. [13]
    Brandao, P., Goncalves, G.E., Duarte, A.K.: Mechanisms of hydration/carbonation of basic refractories. Part 2: Investigation of the kinetics of formation of brucite in fired basic bricks. Refract. Appl. 3 (1998) [2] 9–11Google Scholar
  14. [14]
    Kaneyasu, A., Yamamoto, S., Yoshida, A.: Magnesia raw materials with improved hydration resistance. Taik. Overs. 17 (1997) [2] 21–26Google Scholar
  15. [15]
    Kaneyasu, A., Arita, Y., Yoshida, A., Watanabe, T.: Hydration resistance of MgO aggregate with added CaO. Taik. Overs. 19 (1999) [1] 30–34Google Scholar
  16. [16]
    Kaneyasu, A., Yamamoto, S., Watanabe, T.: MgO raw material with improved hydration resistance. Taik. Overs. 16 (1996) [2] 26–30Google Scholar
  17. [17]
    Kitamura, A., Onizuka, K., Tanaka, K.: Hydration characteristics of magnesia. Taik. Overs. 16 (1996) [3] 3–11Google Scholar
  18. [18]
    Lee, W.E., Vieira, W., Zhang, S., Ghanbari Ahari, K., Sarpoolaky, H., Parr, C.: Castable refractory concretes. Int. Mater. Rev. 46 (2001) 145–167.CrossRefGoogle Scholar
  19. [19]
    Chen, S.K., Cheng, M.Y., Lin, S.C., Ko, Y.C.: Thermal characteristics of Al2O3-MgO and Al2O3-spinel castables for steel ladles. Ceram. Int. 28 (2002) 811–817CrossRefGoogle Scholar
  20. [20]
    Buhr, A.: High alumina refractory castables for steel applications. Stahl und Eisen 116 (1996) [9] 59–66Google Scholar
  21. [21]
    Kriechbaum, G.W. et al.: The influence of SiO2 and spinel on the hot properties of high alumina low cement castables. Proc. 37th Inter. Colloquium Refract. 1994, Aachen (Germany), 150–159Google Scholar
  22. [22]
    Molin, A., Molin, J., Podworny, J.: Corrosion mechanism of spinel forming and spinel containing refractory castables in lab and plant conditions. Proc. UNITECR 2005, Orlando (USA), 57–62Google Scholar
  23. [23]
    Nakagawa, Z., Enomoto, N., Yi, I.S., Asano, K.: Effect of corundum/periclase sizes on expansion behavior during synthesis of spinel. Proc. UNITECR 1995, Kyoto (Japan), 1312–1319Google Scholar
  24. [24]
    Rigaud, M., Palco, S., Wang, N.: Spinel formation in the MgO-Al2O3 system relevant to basic oxides. Proc. UNITECR 1995, Kyoto(Japan), 387–394Google Scholar
  25. [25]
    Lee, W.E., Vieira, W., Zhang, S., Ahari, K.G., Sarpoolaky, H., Parr, C.: Castable refractory concretes. Int. Mat. Rev. 46 (2001) [3] 145–167CrossRefGoogle Scholar
  26. [26]
    Braulio, M.A.L., Bittencourt, L.R.M., Poirier, J., Pandolfelli, V.C.: Microsilica effects on cement bonded alumina-magnesia refractory castables. J. Techn. Assoc. Refract. Japan 28 (2008) [3] 180–184Google Scholar
  27. [27]
    Nagai, B., Matsumoto, O., Isobe, T.: Development of high-alumina castable for steel ladles. Findings on spinel formation in alumina-magnesia castable. Taik. Overs. 10 (1990) [1] 23–28Google Scholar
  28. [28]
    Nandi, P., Grag, A., Chattoraj, B.D., Mukhopahyay, M.S.: Effect of silica and temperature on spinel-based high-alumina castables. Am. Ceram. Soc. Bul. 31 (2000) 65–69Google Scholar
  29. [29]
    Fuhrer, M., Hey, A., Lee, W.E.: Microstructural evolution in self-forming spinel/calcium aluminate castable refractories. J. Eur. Ceram. Soc. 18 (1998) 813–820CrossRefGoogle Scholar
  30. [30]
    Nanba, M., Kaneshige, T., Hamazaki, Y., Nishio, H., Ebisawa, I.: Thermal characteristics of castables for teeming ladle. Taik. Overs. 16 (1996) [3] 17–21Google Scholar
  31. [31]
    Dinger, D.R., Funk, J.E.: Particle packing. III — Discrete versus continuous particle sizes. Interceram 41 (1992) [5] 332–34Google Scholar
  32. [32]
    Fang H.S., Cha C.H., Yong S.Y.: Development of self flow castable. Proc. UNITECR 1995, Kyoto (Japan), 264–71Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations