Advertisement

Interceram - International Ceramic Review

, Volume 63, Issue 6, pp 304–306 | Cite as

Reaction Sintering of Zirconia-Mullite Composites in the Presence of SrO

  • R. Sarkar
  • K. Bishoyi
Special Technologies

Abstract

Reaction sintering of zirconia mullite composites was studied using zircon sand and alumina as the starting materials and SrO as additive up to 6 mass-% in the temperature range of 1500–1600°C. Reaction sintered products were characterized for densification and phase analysis study. SrO up to 4 mass-% was found to be highly beneficial for densification but a higher amount at higher temperatures was found to cause some desintering effect. SrO was found to have no effect on the phase content, and the reaction between zircon and alumina was found to be incomplete even at 1600°C, with and without additive conditions.

Keywords

zircon alumina reaction sintering SrO additive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Torrecillias, R., De Aza, S., Moya, J.S., Epicier, T., Fantozzi, G.: Improved high temperature mechanical properties of zirconia doped mullite. J. Mater. Sci. Lett. 9 (1990) 1400–1402CrossRefGoogle Scholar
  2. [2]
    Skoog, A.J., Moore, R.E.: Refractory of the past for the future: Mullite and its use as bonding phase. Am. Ceram. Soc. Bull. 67 (1988) [7] 1180–1185Google Scholar
  3. [3]
    Aksay, I.A., Dabbs, D.M., Sarlkaya, M.: Mullite for structural, electronic, and optical applications. J. Am. Ceram. Soc. 74 (1991) 2343–2358CrossRefGoogle Scholar
  4. [4]
    Sonuparlak, B.: Sol-gel processing of IR transparent mullite ceramics. J. Am. Ceram. Soc. 66 (1983) [10] 699–703CrossRefGoogle Scholar
  5. [5]
    Claussen, N., Jahn, J.: Mechanical properties of sintered, in situ-reacted mullite-zirconia composites. J. Am. Ceram. Soc. 63 (1980) [3–4] 228–229CrossRefGoogle Scholar
  6. [6]
    DePortu, G., Henney, J.W.: The microstructure and mechanical properties of mullite-zirconia composite. Trans. and J. Br. Ceram. Soc. 83 (1984) [3] 69–72Google Scholar
  7. [7]
    Hamidouche, M., Bouaouadja, N., Osmani, O., Torrecillias, R., Fantozzi, G.: Thermomechanical behaviour of mullite-zirconia composite. J. Europ. Ceram. Soc. 16 (1996) 441–445CrossRefGoogle Scholar
  8. [8]
    Prochazka, S., Wallace, J.S., Claussen, N.: Microstructure of sintered mullite-zirconia composites. J. Am. Ceram. Soc. 66 (1983) [8] C125–C127Google Scholar
  9. [9]
    Wallace, J.S., Petzow, G., Claussen, N.: Microstructure and property development of in situ-reacted mullite-ZrO2 composites. In: Advances in ceramics. Vol. 12: Science and technology of zirconia II. Ed. Claussen, N., Rühle, M., Heuer, A.H., The American Ceramic Society, Columbus, USA (1984) 436–442, ISBN: 0-916094-64-2Google Scholar
  10. [10]
    Moya, J.S., Osendi, M.I.: Effect of ZrO2 (ss) in mullite on the sintering and mechanical properties of mullite/ZrO2 composites. J. Mater. Sci. Lett. 2 (1983) 599–601CrossRefGoogle Scholar
  11. [11]
    Di Rupo, E., Anseau, M.R., Brook, R.J.: Reaction sintering: correlation between densification and reaction. J. Mater. Sci. 14 (1979) 2924–2928CrossRefGoogle Scholar
  12. [12]
    Holstorm, M., Chartier, T., Boch, P.: Reaction sintered ZrO2-mullite composites. Mater. Sci. Eng. A109 (1989) 105–109Google Scholar
  13. [13]
    Wallace, J.S., Claussen, N., Rühle, M., Petzow, G.: Development of phases in in situ reacted mullite zirconia composites. In: surfaces and interfaces in ceramic and ceramic metal systems. Ed. Pask, J., Evans, A., Plenum Publishing Corp., New York (1981) 155–165, ISBN: 0-306-40726-4CrossRefGoogle Scholar
  14. [14]
    Boch, P., Giry, J.P.: Preparation and properties of reaction-sintered mullite-ZrO2 ceramics. Mater. Sci. Eng. 71 (1985) 39–48CrossRefGoogle Scholar
  15. [15]
    Anseau, M.R., Leblud, C., Cambier, F.: Reaction sintering (RS) of mixed zircon-based powders as a route for producing ceramics containing zirconia with enhanced mechanical properties. J. Mater. Sci. Lett. 2 (1983) [7] 366–370CrossRefGoogle Scholar
  16. [16]
    Kozmac, T., Wallace, J.S., Claussen, N.: Influence of MgO additions on the microstructure and mechanical properties of Al2O3-ZrO2 composites. J. Am. Ceram. Soc. 65 (1982) C66–C67CrossRefGoogle Scholar
  17. [17]
    Melo, M.J., Figueiredo, M.O.: Behaviour of titanium in mullite-zirconia composites. Mater. Sci. Eng. A109 (1989) 61–68CrossRefGoogle Scholar
  18. [18]
    Rincon, J.M., Moya, J.S.: Microstructural study of toughened ZrO2/mullite ceramic composites obtained by reaction sintering with TiO2 additions. Brit. Ceram. Trans. J. 85 (1986) [6] 201–206Google Scholar
  19. [19]
    Pena, P., Miranzo, P., Moya J.S., de Aza, S.: Multicomponent toughened ceramic materials obtained by reaction sintering. J. Mater. Sci. 20 (1985) [6] 2011–2022CrossRefGoogle Scholar
  20. [20]
    Haldar, M.K.: Effect of magnesia additions on the properties of zirconia-mullite composites derived from sillimanite beach sand. Ceram. Int. 29 (2003) [5] 573–581CrossRefGoogle Scholar
  21. [21]
    Ebadzadeh, T., Ghasemi, E.: Effect of TiO2 addition on the stability of t-ZrO2 in mullite-ZrO2 composites prepared from various starting materials. Ceram. Int. 28 (2002) [4] 447–450CrossRefGoogle Scholar
  22. [22]
    Das, K., Banerjee, G.: Mechanical properties and microstructures of reaction sintered mullite-zirconia composites in the presence of an additive — dysprosia. J. Europ. Ceram. Soc. 20 (2000) [2] 153–157CrossRefGoogle Scholar
  23. [23]
    Das, K., Mukherjee, B., Banerjee, G.: Effect of yttria on mechanical and microstructural properties of reaction sintered mullite-zirconia composites. J. Europ. Ceram. Soc. 18 (1998) [12] 1771–1777CrossRefGoogle Scholar
  24. [24]
    Sarkar, R., Ghosh, A., Halder, M.K., Mukherjee, B., Das, S.K.: Effect of lanthanum oxide on reaction sintering of zirconia-mullite composites. Am. Ceram. Soc. Bull. 85 (2006) [1] 9201–9208Google Scholar
  25. [25]
    Drennan, J., Hannink, R.H.J.: Effect of sro additions on the grain-boundary microstructure and mechanical properties of magnesia-partially-stabilized zirconia. J. Am. Ceram. Soc. 69 (1986) [7] 541–546CrossRefGoogle Scholar
  26. [26]
    Kinikoglu, S., Mozeyyen, M.: Effect of SrO on densification and mechanical properties of reactionsintered mullite-zirconia. J. Europ. Ceram. Soc. 14 (1994) [1] 45–51CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations