Interceram - International Ceramic Review

, Volume 63, Issue 3, pp 104–108 | Cite as

Fabrication of Porous Ceramics by Direct Foaming

  • X. DengEmail author
  • J. Wang
  • S. Du
  • F. Li
  • L. Lu
  • H. Zhang
Review Papers


Porous ceramics have been extensively studied during the last two decades because of their application potentials in various fields including thermal insulators, radome materials, gas or molten metal filters, catalytic supports and biomedical substitutes for bone. This paper gives a brief review on the recent developments of preparation of porous ceramics by direct foaming method, it shows that the direct foaming method is a more effective way for preparation of high performance porous ceramics with high porosity, high mechanical strength and an even pore size distribution compared with conventional methods.


porous ceramics direct foaming preparation mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hou, Z.G., Du, H.Y., Liu, J.C., Hao, R.H., Dong, X., Liu, M.X.: Fabrication and properties of mullite fiber matrix porous ceramics by a TBA-based gelcasting process. J. Eur. Ceram. Soc. 33 (2013) 717–725CrossRefGoogle Scholar
  2. [2]
    Manoj Kumar, B.V., Zhai, W., Eom, J.H., Kim, Y. W., Park, C.B.: Processing highly porous SiC ceramics using poly (ether-co-octene) and hollow microsphere templates. J. Mater. Sci. 46 (2011) 3664–3667CrossRefGoogle Scholar
  3. [3]
    Li, J.F., Lin, H., Lin, Li, J.B.: Factors that influence the flexural strength of SiC-based porous ceramics used for hot gas filter support. J. Eur. Ceram. Soc. 31 (2011) 825–831CrossRefGoogle Scholar
  4. [4]
    Messing, G.L., Stevenson, A.J.: Materials science: Toward pore-free ceramics. Science 322 (2008) 383–384CrossRefGoogle Scholar
  5. [5]
    Colombo, P.: Advanced processing methods are used to tailor the properties of porous ceramics. Science 322 (2008) 381–383CrossRefGoogle Scholar
  6. [6]
    Hu, X.J., Yu, J., Song, J., Wang, X.G., Huang, Y.: Toward low-cost Pd/ceramic composite membranes for hydrogen separation: A case study on reuse of the recycled porous Al2O3 substrates in membrane fabrication. Int. J. Hydrogen Energy 36 (2011) 15794–15802CrossRefGoogle Scholar
  7. [7]
    Fadli, A., Sopyan, I.: Porous ceramics with controllable properties prepared by protein foaming-consolidation method. J. Porous Mater. 18 (2011) 195–203CrossRefGoogle Scholar
  8. [8]
    Amaral-Labat, G., Zollfrank, C., Ortona, A., Pusterla, S., Pizzi, A., Fierro, V., Celzard, A.: Structure and oxidation resistance of micro-cellular Si-SiC foams derived from natural resins. Ceram. Int. 39 (2013) 1841–1851CrossRefGoogle Scholar
  9. [9]
    Zocca, A., Gomes, C.M., Bernardo, E., Müller, R., Günster, J., Colombo, P.: LAS glass-ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33 (2013) 1525–1533CrossRefGoogle Scholar
  10. [10]
    Ding, S., Zeng, Y.P., Jiang, D.: Oxidation bonding of porous silicon nitride ceramics with high strength and low dielectric constant. Mater. Lett. 61 (2007) 2277–2280CrossRefGoogle Scholar
  11. [11]
    Kocjan, A., Shen, Z.: Colloidal processing and partial sintering of high-performance porous zirconia nanoceramics with hierarchical heterogeneities. J. Eur. Ceram. Soc. 33 (2013) 3165–3176CrossRefGoogle Scholar
  12. [12]
    Kalemtas, A., Topates, G., Özcoban, H., Mandal, H., Kara, F., Janssen, R.: Mechanical characterization of highly porous β-Si3N4 ceramics fabricated via partial sintering and starch addition. J. Eur. Ceram. Soc. 33 (2013) 1507–1515CrossRefGoogle Scholar
  13. [13]
    He, X., Su, B., Tang, Z., Zhao, B., Wang, X., Yang, G., Qiu, H., Zhang, H., Yang, J.: The comparison of macroporous ceramics fabricated through the protein direct foaming and sponge replica methods. J. Porous Mater. 19 (2012) 761–766CrossRefGoogle Scholar
  14. [14]
    Chen, F., Yang, Y., Shen, Q., Zhang, L. M.: Macro/micro structure dependence of mechanical strength of low temperature sintered silicon carbide ceramic foams. Ceram. Int. 38 (2012) 5223–5229CrossRefGoogle Scholar
  15. [15]
    Akpinar, S., Altun, I.A., Onel, K.: Effects of SiC addition on the structure and properties of reticulated porous mullite ceramics. J. Eur. Ceram. Soc. 30 (2010) 2727–2734.CrossRefGoogle Scholar
  16. [16]
    Sarikaya, A., Dogan, F.: Effect of various pore formers on the microstructural development of tape-cast porous ceramics. Ceram. Int. 39 (2013) 403–413CrossRefGoogle Scholar
  17. [17]
    Liu, R.P., Wang, C.G.: Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics. J. Eur. Ceram. Soc. 33 (2013) 1859–1865CrossRefGoogle Scholar
  18. [18]
    Lee, S.J., Lee, J.M., Kim, Y.G., Yoon, S.D., Yun, J.W.: Thermal cycle development of PMMA pore former removal for honeycomb-type SOFC supports. Ceram. Int. 40 (2014) 4879–4887CrossRefGoogle Scholar
  19. [19]
    Zhou, J., Wang, C.A.: Porous yttria-stabilized zirconia ceramics fabricated by nonaqueous based gel-casting process with PMMA microsphere as poreforming agent. J. Am. C eram. Soc. 96 (2013) 266–271CrossRefGoogle Scholar
  20. [20]
    Zou, C.R., Zhang, C.R., Li, B., Wang, S.Q., Cao, F.: Microstructure and properties of porous silicon nitride ceramics prepared by gelcasting and gas pressure sintering. Mater. Des. 44 (2013) 114–118CrossRefGoogle Scholar
  21. [21]
    Wu, H.B., Yin, J., Liu, X.J., Huang Z.G., Lee S.H.: Aqueous gelcasting and pressureless sintering of zirconium diboride foams. Ceram. Int. 40 (2014) 6325–6330CrossRefGoogle Scholar
  22. [22]
    Tang, Y.F., Zhao, K., Hu, L., Wu, Z.X.: Two-step freeze casting fabrication of hydroxyapatite porous scaffolds with bionic bone graded structure. Ceram. Int. 39 (2013) 9703–9707CrossRefGoogle Scholar
  23. [23]
    Preiss, A., Su, B., Collins, S., Simpson, D.: Tailored graded pore structure in zirconia toughened alumina ceramics using double-side cooling freeze casting. J. Eur. Ceram. Soc. 32 (2012) 1575–1583CrossRefGoogle Scholar
  24. [24]
    Fielding, G., Bose, S.: SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater. 9 (2013) 9137–9148CrossRefGoogle Scholar
  25. [25]
    Kim, Y.W., Kim, S.H., Xu, X., Choi, C.H., Park, C.B., Kim, H.D.: Fabrication of porous preceramic polymers using carbon dioxide. J. Mater. Sci. Lett. 21 (2002) 1667–1669CrossRefGoogle Scholar
  26. [26]
    Colombo, P., Griffoni, M., Modesti, M.: Ceramic foams from a preceramic polymer and polyurethanes: Preparation and morphological investigations. J. Sol-Gel Sci. Technol. 13 (1998) 195–199CrossRefGoogle Scholar
  27. [27]
    Colombo, P., Hellmann, J.R.: Ceramic foams from preceramic polymers. Mater. Res. Innovat. 6 (2002) 260–272CrossRefGoogle Scholar
  28. [28]
    Colombo, P., Modesti, M.: Silicon oxycarbide foams from a silicone preceramic polymer and polyurethane. J. Sol-Gel Sci. Technol. 14 (1999) 103–111CrossRefGoogle Scholar
  29. [29]
    Potoczek, M.: Gelcasting of alumina foams using agarose solutions. Ceram. Int. 34(2008) 661–667CrossRefGoogle Scholar
  30. [30]
    Mohanta, K., Kumar, A., Parkash, O., Kumar, D.: Processing and properties of low cost macroporous alumina ceramics with tailored porosity and pore size fabricated using rice husk and sucrose. J. Eur. Ceram. Soc. 2014.
  31. [31]
    Tulliani, J.M., Lombardi, M., Palmero, P., Fornabaio, M., Gibson, L.J.: Development and mechanical characterization of novel ceramic foams fabricated by gelcasting. J. Eur. Ceram. Soc. 33 (2013) 1567–1576CrossRefGoogle Scholar
  32. [32]
    Fadli, A., Sopyan, I.: Porous ceramics with controllable properties prepared by protein foaming-consolidation method. J. Porous Mater. 18 (2011) 195–203CrossRefGoogle Scholar
  33. [33]
    Sopyan, I., Fadli, A., Mel, M.: Porous aluminahydroxyapatite composites through proteinfoaming-consolidation method. J. Mech. Behav. Biomed. 8 (2012) 86–98CrossRefGoogle Scholar
  34. [34]
    Yin, L. Y., Zhou, X. G., Yu, J. S., Wang, H. L., Zhao, S., Luo, Z., Yang, B.: New consolidation process inspired from making steamed bread to prepare Si3N4 foams by protein foaming method. J. Eur. Ceram. Soc. 33 (2013) 1387–1392CrossRefGoogle Scholar
  35. [35]
    Yin, L. Y., Zhou, X. G., Yu, J. S., Wang, H., Liu, Z: Protein foaming method to prepare Si3N4 foams by using a mixture of egg white protein and whey protein isolate. Ceram. Int.
  36. [36]
    Xie, Z., Chen, Y., Huang, Y.: A novel casting forming for ceramics by gelatin and enzyme catalysis. J. Eur. Ceram. Soc. 20 (2000) 253–257CrossRefGoogle Scholar
  37. [37]
    Gregorová, E., Pabst, W.: Process control and optimized preparation of porous alumina ceramics by starch consolidation casting. J. Eur. Ceram. Soc. 31(2011) 2073–2081CrossRefGoogle Scholar
  38. [38]
    Živcová, Z., Gregorová, E., Pabst, W.: Low- and high-temperature processes and mechanisms in the preparation of porous ceramics via starch consolidation casting. Starch-Stärke 62 (2010) 3–10CrossRefGoogle Scholar
  39. [39]
    Gong, L.L., Wang, Y.H., Cheng, X.D., Zhang, R.F., Zhang, H.P.: Porous mullite ceramics with low thermal conductivity prepared by foaming and starch consolidation. J. Porous Mater. 21 (2014) 15–21CrossRefGoogle Scholar
  40. [40]
    Fujiu, Messing, T.G.L., Huebner W.: Processing and properties of cellular silica synthesized by foaming sol gels. J. Am. Ceram. Soc. 73 (1990) 85–90CrossRefGoogle Scholar
  41. [41]
    Destribats, M., Faure, B., Birot, M., Babot, O., Schmitt, V., Backov, R.: Tailored silica macrocellular foams: Combining limited coalescence-based pickering emulsion and sol-gel process. Adv. Funct. Mater. 22 (2012) 2642–2654CrossRefGoogle Scholar
  42. [42]
    Alves-Rosa, M.A., Martins, L., Pulcinelli, S.H. Santilli, C.V.: Design of microstructure of zirconia foams from the emulsion template properties. Soft Matter 9 (2013) 550–558CrossRefGoogle Scholar
  43. [43]
    Beozzo, C.C., Alves-Rosa, M.A., Pulcinelli, S.H., Santilli C.V.: Liquid foam templates associated with the sol-gel process for production of zirconia ceramic foams. Materials 6 (2013) 1967–1979CrossRefGoogle Scholar
  44. [44]
    Rosa, A., Santos, E.P., Santilli, C.V., Pulcinelli, S.H.: Zirconia foams prepared by integration of the sol-gel method and dual soft template techniques. J. Non-Cryst. Solids 354 (2008) 4786–4789CrossRefGoogle Scholar
  45. [45]
    Lins, R.F., Alves-Rosa, M.A., Pulcinelli, S.H., Santilli, C.V.: Formation of TiO2 ceramic foams from the integration of the sol-gel method with surfactants assembly and emulsion. J. Sol-Gel Sci. Technol. 63 (2012) 224–229CrossRefGoogle Scholar
  46. [46]
    Guo, X., Nakanishi, K., Kanamori, K., Zhu, Y., Yang, H.: Preparation of macroporous cordierite monoliths via the sol-gel process accompanied by phase separation. J. Eur. Ceram. Soc. 34 (2014) 817–823CrossRefGoogle Scholar
  47. [47]
    Binner, J.G.P.: Production and properties of low density engineering ceramic foams. Br. Ceram. Trans. 96 (1997) 247–249Google Scholar
  48. [48]
    Sepulveda, P.: Gelcasting foams for porous ceramics. Am. Ceram. Soc. Bull. 76 (1997) 61–65Google Scholar
  49. [49]
    Sepulveda, P., Binner, J.G.P.: Processing of cellular ceramics by foaming and in situ polymerisation of organic monomers. J. Eur. Ceram. Soc. 19 (1999) 2059–2066CrossRefGoogle Scholar
  50. [50]
    Sepulveda, P., Binner, J.G.P., Rogero, S.O., Higa, O.Z., Bressiani, J.C.: Production of porous hydroxyapatite by the gelcasting of foams and cytotoxic evaluation. J. Biomed. Mater. Res. 50 (2000) 27–34CrossRefGoogle Scholar
  51. [51]
    Sepulveda, P., Ortega, F.S., Innocentini, M.D.M., Pandolfelli, V.C.: Properties of highly porous hydroxyapatite obtained by the gelcasting of foams. J. Am. Ceram. Soc. 83 (2000) 3021–3024CrossRefGoogle Scholar
  52. [52]
    Omatete, O.O., Janney, M.A., Strehlow, R.A.: Gelcasting — a new ceramic forming process. J. Am. Ceram. Soc. Bull. 70 (1991) 1641–1649Google Scholar
  53. [53]
    Young, A.C., Omatete, O.O., Janney, M.A., Menchhofer, P.A: Gelcasting of alumina. J. Am. Ceram. Soc. 74 (1991) 612–618CrossRefGoogle Scholar
  54. [54]
    Sepulveda, P., Binner, J.G.P.: Evalution of the in situ polymerization kinetics for the gelcasting of ceramic foams. Chem. Mater. 13 (2001) 3882–3887CrossRefGoogle Scholar
  55. [55]
    Mao, X.J., Shimai, S., Wang, S.W.: Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 28 (2008) 217–222CrossRefGoogle Scholar
  56. [56]
    Kim, H., Lee, S., Han Y., Park, J.K.: Control of pore size in ceramic foams: Influence of surfactant concentration. Mater. Chem. Phys. 113 (2009) 441–444CrossRefGoogle Scholar
  57. [57]
    Yu, J., Yang, J., Zeng, Q., Huang, Y.: Effect of carboxymethyl cellulose addition on the properties of Si3N4 ceramic foams. Ceram. Int. 39 (2013) 2775–2779CrossRefGoogle Scholar
  58. [58]
    Wu, H., Yin, J., Liu, X., Huang, Z., Lee, S. H.: Aqueous gelcasting and pressureless sintering of zirconium diboride foams. Ceram. Int. 40 (2014) 6325–6330CrossRefGoogle Scholar
  59. [59]
    Yang, Y., Shimai, S., Sun, Y., Dong, M., Kamiya, H., Wang, S.W.: Fabrication of porous Al2O3 ceramics by rapid gelation and mechanical foaming. J. Mater. Res. 28 (2013) 2012–2016CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  • X. Deng
    • 1
    • 2
    Email author
  • J. Wang
    • 1
  • S. Du
    • 1
  • F. Li
    • 1
  • L. Lu
    • 3
  • H. Zhang
    • 1
  1. 1.The State Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina
  2. 2.Luoyang Cen-Lon Ceramics Company Ltd.LuoyangChina
  3. 3.College of Chemical Engineering and TechnologyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations