Advertisement

Effect of Calcium Fluoride Addition on Densification and Microstructure of Reaction-Sintered Indian Clay-Alumina Mixtures

  • K. Das
  • S. Das
  • S. Mondal
  • P. K. Maiti
Raw Materials Worldwide

Abstract

A mullite compound was prepared using Indian clay and reactive alumina following a reaction-sintering route in the presence of a calcium fluoride (CaF2) additive. 0.25, 0.50, and 1.00 mass-% CaF2 was added to the mullite (stoichiometric) forming batch and the batches were sintered at temperatures of 1550, 1600, and 1650°C for 2 h. The batch without CaF2 completed the reaction at 1600°C whilst a relative density of 97% of the theoretical density of mullite was attained at 1650°C/2 h, whereas with 0.25 mass-% CaF2 the batch completed the reaction at 1550°C and achieved the same relative density at 1600°C/2 h. A bimodal distribution of elongated lath-shaped primary mullite and equiaxed secondary mullite was found in the secondary electron image of the 0.25% CaF2-containing batch sintered at 1650°C/2 h. The microstructures of the CaF2-containing batches are discussed.

Keywords

kaolinite calcium fluoride reaction sintering primary mullite secondary mullite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ohnishi, H., Maeda, K., Nakamura, T., Kawanami, T.: High Temperature Mechanical Properties of Mullite Ceramics. Mullite and Mullite Matrix Composites, Ceramic Transactions, vol. 6, S. Somiya, R.F. Davis, J.A. Pask (Editors), The Amer. Ceram Soc. (1990) 605–612Google Scholar
  2. [2]
    Schneider, H., Eberhard, E.: Thermal Expansion of Mullite. J. Amer. Ceram. Soc. 73 (1990) 2073–2076CrossRefGoogle Scholar
  3. [3]
    Rezaie, H.R., Rainforth, W.M., Lee, W.E.: Mullite evolution in ceramics derived from kaolinite, kaolinite with added a-alumina, and sol-gel precursors. Trans. Br. Ceram. Soc. 96 (1997) 181–187Google Scholar
  4. [4]
    Raut, N.S., Biswas, P., Bhattacharya, T.K., Das, K.: Effect of Bauxite addition on densification and mullitization behaviour of West Bengal clay. Bull of Mater. Sc. 31 (2008) 995–999CrossRefGoogle Scholar
  5. [5]
    Viswabaskaran, V., Gnanam, F.D., Balasubramanian, M.: Mullitization behaviour of calcined clay-alumina mixtures. Ceramic Internat. 29 (2003) 561–571CrossRefGoogle Scholar
  6. [6]
    Liu, K.C., Thomas, G., Caballero, A., Moya, J.S., de Aza, S.: Microstructure and microanalysis of mullite processed by reaction sintering of kaolin-alumina mixture In: P. Vincenzini (Editor), Ceramics Today — Tomorrow’s Ceramics. Materials Science Monographs, Elsevier Science, London, 66A (1991) 177–186Google Scholar
  7. [7]
    Chaudhuri, S.P. and Patra, S.K.: Preparation and characterization of transition ion doped mullite. Br. Ceram. Trans. 96 (1995) 105–111Google Scholar
  8. [8]
    Ismail, M.G., Nakai, Z., Somiya, S.: Microstructure and mechanical properties of mullite prepared by the sol-gel Method. J. Amer. Ceram. Soc. 70 (1987) c7–c8CrossRefGoogle Scholar
  9. [9]
    Ebadzadeh, T.: Formation of mullite from precursor powders: sintering, microstructure and mechanical properties. Mater. Sc. and Engg. A355 (2003) 56–61CrossRefGoogle Scholar
  10. [10]
    Kuo-Chung, L., Thomas, G., Caballero, A. Moya, J.S., DeAza, S.: Mullite formation in kaolinite-a-alumina. Acta Metall. Mater. 42 (1994) 489–495CrossRefGoogle Scholar
  11. [11]
    Liu, K.C., Thomas, G., Caballero, A., Moya, J.S., Aza, S. de.: Time-temperature-transformation curves for kaolinite-α-alumina. J. Amer. Ceram. Soc. 77 (1994) 1545–1552CrossRefGoogle Scholar
  12. [12]
    Chen, C.Y., Lan, G.S., Tuan, W.H.: Preparation of mullite by reaction sintering of kaolinite and alumina. J. Europ. Ceram. Soc. 20 (2000) 2519–2525CrossRefGoogle Scholar
  13. [13]
    Sahnoune, F., Chegaar, M., Saheb, N., Goeuriot, P., Valdivieso, F.: Algerian Kaolinite used for mullite formation. Appl Clay Sc. 38 (2008) 304–310CrossRefGoogle Scholar
  14. [14]
    Bark, I.M., Naga, S.M.: Role of B2O3 in formation of mullite from kaolinite and α-Al2O3 mixtures. Trans. Br. Ceram. Soc. 101 (2002) 133–135CrossRefGoogle Scholar
  15. [15]
    Viswabaskaran, V., Gnanam, F.D., Balasubramanian, M.: Effect of MgO, Y2O3 and boehmite additives on the sintering behaviour of mullite formed from kaolinite-reactive alumina. J. Mater. Process. Tech. 142 (2004) 275–281CrossRefGoogle Scholar
  16. [16]
    Mitra, N.K., Mandal, A., Maitra, S., Basumajumder, A.: Effect of TiO2 on the interaction of dehydroxylated kaolinite with Al(OH)3 gel in relation to mullitisation. Ceramic Internat. 28 (2002) 235–243CrossRefGoogle Scholar
  17. [17]
    Kostic, E., Boskovic, S., Kis, S.: Influence of fluorine ion on the spinel synthesis. J. Mater. Sc. Lett. 1 (1982) 507–510CrossRefGoogle Scholar
  18. [18]
    Kim, Hae-Won., Koh, Y., Yoon, B., Kim, H.: Reaction sintering and mechanical properties of hydroxyapatite-zirconia with calcium fluoride additions. J. Amer. Ceram. Soc. 85 (2002) 1634–1636CrossRefGoogle Scholar
  19. [19]
    Grimshaw, RW.: in The Chemistry and Physics of Clay and Allied Materials. 4th ed. Ernest Benn Ltd., London, (1972)Google Scholar
  20. [20]
    Chen Yung, Wang, Moo-Chin, Hon Min.: Phase transformation and growth of mullite in kaolin ceramics. J. Euro. Ceram. Soc. 24 (2004) 2389–2397CrossRefGoogle Scholar
  21. [21]
    Chen, Z., Zhang, L., Cheng, L., Xiao, P., Duo, G.: Novel method of adding seeds for preparation of mullite. J. Mat. Processing Tech. 166 (2005) 183–187CrossRefGoogle Scholar
  22. [22]
    Brindley, G.W., Nakahira, M.: The Kaolinite-Mullite reaction series. J. Amer. Ceram. Soc. 43 (20) 314–324Google Scholar
  23. [23]
    Chakravorty, A.K.: Formation of silicon aluminium spinel. J. Amer. Ceram. Soc. 62 (1979) 120–125CrossRefGoogle Scholar
  24. [24]
    Chakraborty, A.K.: Resolution of the thermal peaks of kaolinite in thermomechanical analysis and differential thermal analysis studies. J. Amer. Ceram. Soc. 75 (1992) 2013–2016CrossRefGoogle Scholar
  25. [25]
    Dubois, J., Murat, M., Amroune, A., Carbonneau, X., Gardon, R.: High Temperature Transformation in Kaolinite: the role of the crystallinity and of the firing atmosphere. Appl. Clay Sc. 10 (1995) 187–198CrossRefGoogle Scholar
  26. [26]
    Sanchez-Soto, P.J., Jimenez de Haro, M., Perez-Rotriguez, JL.: The effect of dry grinding on the structural changes of kaolinite powders. J. Amer. Ceram. Soc. 83 (2000) 1649–1657CrossRefGoogle Scholar
  27. [27]
    Sainz, M.A., Serrano, F.J., Amigo, J.M., Bastida, J., Caballero, A.: XRD microstructural analysis of mullites obtained from kaolinite-alumina mixtures. J. Europ. Ceram. Soc. 20 (2000) 403–412CrossRefGoogle Scholar
  28. [28]
    Mirhadi, B., Mehdikhani, B.: Effect of CaF2 on sintering of SiO2-CaO-Na2O-MgO glass-ceramics system. Processing & Applications of Ceramics 6 (2012) 159–164CrossRefGoogle Scholar
  29. [29]
    Doyale, P.J.: in Glass Making Today, 1st ed. Portcullis Press, Red Hill, Sheffield, England, (1979)Google Scholar
  30. [30]
    Vargin, V.V.: In Technology of enamels, Kenneth Shaw (Ed), Maclaren & Sons Ltd., London (1967)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2014

Authors and Affiliations

  1. 1.Government College of Engineering and Ceramic TechnologyKolkataIndia
  2. 2.Department of Chemical TechnologyUniversity of CalcuttaKolkataIndia

Personalised recommendations