Keramische Zeitschrift

, Volume 69, Issue 5, pp 115–121 | Cite as

Herstellung, Eigenschaften und Anwendung nano-kristalliner Diamantschichten

  • M. Mohr
  • M. Mertens
  • K. Brühne
  • P. Gluche
  • H.-J. Fecht
Forschung & Technik


Die Möglichkeit, nanokristalline Diamantschichten mittels Heißdraht-Gasphasendeposition großflächig abzuscheiden, erlaubt es, die Anwendungspotentiale und herausragenden Eigenschaften von Diamant in größerem Umfang nutzbar zu machen. Die Korngröße der nanokristallinen Diamantschichten kann über einen weiten Bereich durch die Wahl der Wachstumsparameter variiert werden, wodurch die Materialeigenschaften für die gewünschten Anwendungen systematisch angepasst werden können. In diesem Artikel wird ein Überblick über die Herstellung, die Eigenschaften und Anwendungsmöglichkeiten von nanokristallinen Diamantschichten dargestellt.


Nanokristalline Diamantschichten chemische Gasphasenabscheidung mikromechanische Bauteile Schneidwerkzeuge Sensorik 


The possibility to deposit nanocrystalline diamond films by means of hot–filament chemical vapor deposition on large areas enables the ex–ploitation of its potential for applications and the outstanding properties of diamond to a wider extend. The grain size of nanocrystalline diamond films can be varied over a wide range by the choice of the growth param–eters. That way the material properties can be adjusted for the desired applications. In this article we give an overview over the synthesis, the properties and the potential applications of nanocrystalline diamond films.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fecht, H.-J., Brühne, K., Gluche, P.: Carbon–based nanomaterials and hybrids: Synthesis, properties, and commercial applications. Pan Stanford Publishing (2014) 1–5, ISBN: 9789814316859Google Scholar
  2. 2.
    Bachmair, F.: Diamond sensors for future high energy experiments. Nuclear Instruments and Methods in Physics Research Section A 831 (2016) 370–377CrossRefGoogle Scholar
  3. 3.
    Luong, J.H.T., Male, K.B., Glennon, J.D.: Boron–doped diamond electrode: Synthesis, characterization, functionalization and analytical applications. The Analyst 134 (2009) [10] 1965–1979CrossRefGoogle Scholar
  4. 4.
    Tadjer, M.J., Anderson, T.J., Feygelson Jr., T.I.R., Kub, F.J.: Nanocrystalline diamond capped AIGaN/GaN high electron mobility transistors via a sacrificial gate process. Physica Status Solidi (A): Appl. and Mater. 213 (2006) [4] 893–897CrossRefGoogle Scholar
  5. 5.
    Liu, H., Dandy, D. S.: Studies on nucleation process in diamond CVD: An overview of recent developments. Diamond and Related Materials 4 (1995) [10] 1173–1188CrossRefGoogle Scholar
  6. 6.
    Gluche, P., Flöter, A., Ertl, S., Fecht, H.-J.: Commercial applications of diamond–based nano– and microtechnology. in: The Nano–Micro Interface: Bridging the micro and nano worlds. Fecht, H.-J., Werner, M., (edt.), Wiley–VCH (2004) ISBN: 978–3–527–33633–3Google Scholar
  7. 7.
    Wiora, M., Gretzschel, R., Strobel, S., Gluche, P.: Industrial applications and commer–cial perspectives of nanocrystalline diamond. in: Carbon–Based Nanomaterials and Hybrids: Synthesis, properties, and commercial applications. Fecht, H.-J., Brühne, K., Gluche, P., (edt.) Pan Stanford Publishing (2014) 155–170, ISBN: 9789814316859Google Scholar
  8. 8.
    Wiora, M., Brühne, K., Caron, A., Flöter, A., Gluche, P., Fecht, H.-J.: Synthesis, relia–bility and applications of nanocrystalline CVD–grown diamond and micro device fabrication. Tech. Proc. 2008 NSTI Nanotechnology Conf. and Trade Show, NSTI–Nanotech, Nanotechno–logy 1 (2008)206–209Google Scholar
  9. 9.
    Wiora, M., Brühne, K., Flöter, A., Gluche, P., Willey, T.M., Kucheyev, S.O., van Buu–ren, A.W., Hamza, A.V., Biener, J., Fecht, H.-J.: Grain size dependent mechanical pro–perties of nanocrystalline diamond films grown by hot–filament CVD, Diamond and Related Materials 18 (2009) [5–8] 927–930CrossRefGoogle Scholar
  10. 10.
    Sauer, R.: Synthetic diamond — basic research and applications. Cryst. Res. Technol. 34 (1999) [2] 227–241CrossRefGoogle Scholar
  11. 11.
    Hess, P.: The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal. J. Appl. Phys. 111 (2012) [5] 051101CrossRefGoogle Scholar
  12. 12.
    Bundy, F.P., Hall, H.T., Strong, H.M., Wentorf, R.H.: Man–Made diamonds. Nature 176 (1955) [4471] 51–55CrossRefGoogle Scholar
  13. 13.
    Angus, J.C.: Diamond synthesis by chemical vapor deposition: The early years. Diamond and Related Materials 49 (2014) 77–86CrossRefGoogle Scholar
  14. 14.
    Eversole, W.G.: Synthesis of Diamond, US Patent 3 030 187, (1962)Google Scholar
  15. 15.
    Eversole, W.G.: Synthesis of Diamond, US Patent 3 030 188, (1962)Google Scholar
  16. 16.
    Eversole, W.G.: Canadian Patent 628 567, (1961)Google Scholar
  17. 17.
    Spitsyn, B.V., Bouilov, L.L., Derjaguin, B.V.: Vapor growth of diamond on diamond and other surfaces. J. Crystal Growth 52 (1981) 219–226CrossRefGoogle Scholar
  18. 18.
    Matsumoto, S., Sato, Y., Tsutsumi, M., Setaka, N.: Growth of diamond particles from methane–hydrogen gas. J. Mater. Sci. 17 (1982) [11] 3106–3112CrossRefGoogle Scholar
  19. 19.
    Wiora, M., Brühne, K., Fecht, H.-J.: Synthesis of nanodiamond, in: Carbon–based nano–materials and hybrids: Synthesis, properties, and commercial applications, Fecht, H.-J., Brühne, K., Gluche, P. , (edt.) Pan Stanford Publishing (2014) 5–48, ISBN: 9789814316859Google Scholar
  20. 20.
    Bähr, M.: Synthetische Diamantschichten und Sensortechnologie. Mess– und Sensortech–nik (2017) 62–65Google Scholar
  21. 21.
    Mohr, M., Behroudj, A., Wiora, N., Mertens, M., Brühne, K., Fecht, H.-J.: Fabrication and characterization of a hybrid silicon and nanocrystalline diamond membrane pressure sensor. Quantum Matter 6 (2017) [1] 41–44CrossRefGoogle Scholar
  22. 22.
    Kusterer, J., Kohn, E., Lüker, A., Kirby, P. , O′Keefe, M.F.: Diamond high speed and high power MEMS switches, Proc. 4th EMRS DTC Techn. Conf., Edinburgh (2007)Google Scholar
  23. 23.
    Kusterer, J., Kohn, E.: CVD diamond MEMS, in: CVD diamond for electronic devices and sensors. Sussmann, R.S., (edt.), Wiley (2009) 469–548, ISBN: 978–0470065327CrossRefGoogle Scholar
  24. 24.
    Mohr, M., Caron, A., Herbeck–Engel, P. , Bennewitz, R., Gluche, P. , Brühne, K., Fecht, H.-J., Young’s modulus, fracture strength, and Poisson’s ratio of nanocrystalline diamond flms. J. Appl. Phys. 116 (2014) [12] 124308CrossRefGoogle Scholar
  25. 25.
    Malavé, A., Oesterschulze, E.: All–diamond cantilever probes for scanning probe microscopy applications realized by a proximity lithography process. Rev. Scientifc Inst. 77 (2006) [4] 043708CrossRefGoogle Scholar
  26. 26.
    Holmberg, K., Matthews, A.: Coatings Tribology, 2nd ed. (2009), Elsevier Science, Amsterdam, Boston, ISBN: 978–0444527509Google Scholar
  27. 27.
    Pastewka, L., Moser, S., Gumbsch, P. , Moseler, M.: Anisotropic mechanical amorphi–zation drives wear in diamond. Nature Mater. 10 (2011) [1] 34–38CrossRefGoogle Scholar
  28. 28.
    Fineberg, J.: Diamonds are forever — or are they? Nature Mater. 10 (2011) [1] 3–4CrossRefGoogle Scholar
  29. 29.
    Grillo, S.E., Field, J.E.: The friction of CVD diamond at high Hertzian stresses: the effect of load, environment and sliding velocity. J. Phys. D: Appl. Phys. 33 (2000) [6] 595–602CrossRefGoogle Scholar
  30. 30.
    Alahelisten, A.: Abrasion of hot fame–deposited diamond coatings. Wear 185 (1995) [1–2] 213–224CrossRefGoogle Scholar
  31. 31.
    Wiora, M., Sadrifar, N., Brühne, K., Gluche, P. , Fecht, H.-J.: Correlation of micro–structure and tribological properties of dry sliding nanocrystalline diamond coatings. Techn. Proc. NSTI Nanotechnology Conf. and Expo NSTI–Nanotech, 2 (2011) 164–167Google Scholar
  32. 32.
    Jarratt, M., Stallard, J., Renevier, N. M., Teer, D. G.: An improved diamond–like car–bon coating with exceptional wear properties. Diamond and Related Materials, 12 (2003) [3–7] 1003–1007CrossRefGoogle Scholar
  33. 33.
    Kalish, R.: The search for donors in diamond, Diamond and Related Mater. 10 (2001) [9–10] 1749–1755CrossRefGoogle Scholar
  34. 34.
    Lagrange, J. P. , Deneuville, A., Gheeraert, E.: Activation energy in low compensated homoepitaxial boron–doped diamond flms. Diamond and Related Mater. 7 (1998) [9] 1390–1393CrossRefGoogle Scholar
  35. 35.
    Bhattacharyya, S., Auciello, O., Birrell, J., Carlisle, J.A., Curtiss, L.A., Goyette, A.N., Gruen, D.M., Krauss, A.R., Schlueter, J., Sumant, A., Zapol, P. : Synthesis and characterization of highly–conducting nitrogen–doped ultra–nanocrystalline diamond flms. Appl. Phys. Lett. 79 (2001) [10] 1441–1443CrossRefGoogle Scholar
  36. 36.
    Williams, O.A., Curat, S., Gerbi, J.E., Gruen, D.M., Jackman, R.B.: n–type conductivity in ultrananocrystalline diamond flms. Appl. Phys. Lett. 85 (2004) [10] 1680–1682CrossRefGoogle Scholar
  37. 37.
    Wiora, N., Mertens, M., Mohr, M., Brühne, K., Fecht, H.-J.: Synthesis and character–ization of n–type nitrogenated nanocrystalline diamond. Micromater. and Nanomater. 15 (2013) 1619–2486, ISSN: 1619–2486Google Scholar
  38. 38.
    Zapol, P. , Sternberg, M., Curtis, L.A., Frauenheim, T., Gruen, D.M.: Tight–bind–ing molecular–dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries. Phys. Rev. B — Condensed Matter and Mater. Phys. 65 (2001) [4] 045403Google Scholar
  39. 39.
    Birrell, J., Carlisle, J.A., Auciello, O., Gruen, D.M., Gibson, J.M.: Morphology and electronic structure in nitrogen–doped ultrananocrystalline diamond. Appl. Phys. Lett. 81 (2002) [12] 2235–2237CrossRefGoogle Scholar
  40. 40.
    Mertens, M., Lin, I.–N., Manoharan, D., Moheinian, A., Brühne, K., Fecht, H.-J.: Structural properties of highly conductive ultra–nanocrystalline diamond flms grown by hot–flament CVD. AIP Advances 7 (2017) [1] 015312CrossRefGoogle Scholar
  41. 41.
    Wiora, N., Mertens, M., Mohr, M., Brühne, K., Fecht, H.-J.: Piezoresistivity of n–type conductive ultrananocrystalline diamond. Diamond and Related Mater. 70 (2016) 145–150CrossRefGoogle Scholar
  42. 42.
    Mohr, M., Daccache, L., Horvat, S., Brühne, K., Jacob, T., Fecht, H.-J.: Infuence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond flms. Acta Materialia, 122 (2017) [1] 92–98CrossRefGoogle Scholar
  43. 43.
    Morelli, D.T., Beetz, C.P., Perry, T.A.: Thermal conductivity of synthetic diamond flms. J. Appl. Phys. 64 (1988) [6] 3063CrossRefGoogle Scholar
  44. 44.
    Liu, W.L., Shamsa, M., Calizo, I., Balandin, A.A., Ralchenko, V., Popovich, A., Saveliev, A.: Thermal conductivity in nanocrystalline diamond flms: Efects of the grain boundary scattering and nitrogen doping. Appl. Phys. Lett. 89 (2006) [17] 171915CrossRefGoogle Scholar
  45. 45.
    Graebner, J.E., Mucha, J.A., Seibles, L., Kammlott, G.W.: The thermal conductivity of chemical–vapor–deposited diamond flms on silicon. J. Appl. Phys. 71 (1992) [7] 3143CrossRefGoogle Scholar
  46. 46.
    Shamsa, M., Ghosh, S., Calizo, I., Ralchenko, V., Popovich, A., Balandin, A.A.: Ther–mal conductivity of nitrogenated ultrananocrystalline diamond flms on silicon. J. Appl. Phys. 103 (2008) [8] 083538CrossRefGoogle Scholar
  47. 47.
    Plamann, K., Fournier, D., Anger, E., Gicquel, A.: Photothermal examination of the heat difusion inhomogeneity in diamond flms of sub–micron thickness. Diamond and Related Mater. 3 (1994) [4–6] 752–756CrossRefGoogle Scholar
  48. 48.
    Angadi, M.A., Watanabe, T., Bodapati, A., Xiao, X., Auciello, O.: Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin flms. J. Appl. Phys. 99 (2006) [11] 114301CrossRefGoogle Scholar
  49. 49.
    Sermeus, J., Verstraeten, B., Salenbien, R., Pobedinskas, P. , Haenen, K., Glorieux, C., Determination of elastic and thermal properties of a thin nanocrystalline diamond coating using all–optical methods. Thin Solid Films 590 (2015) [1] 284–292CrossRefGoogle Scholar
  50. 50.
    Engenhorst, M., Fecher, J., Notthof, C., Schierning, G., Schmechel, R., Rosiwal, S.M.: Thermoelectric transport properties of boron–doped nanocrystalline diamond foils. Carbon, 81 (2015) 650–662CrossRefGoogle Scholar
  51. 51.
    Rossi, S., Alomari, M., Zhang, Y., Bychikhin, S., Pogany, D., Weaver, J. M. R., Kohn, E.: Thermal analysis of submicron nanocrystalline diamond flms, Diamond and Related Materials, 40 (2013) 69–74CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  • M. Mohr
    • 1
  • M. Mertens
    • 2
  • K. Brühne
    • 1
  • P. Gluche
    • 2
  • H.-J. Fecht
    • 1
  1. 1.Institut für Mikro und NanomaterialienUniversität UlmUlmDeutschland
  2. 2.GFDGesellschaft für Diamantprodukte mbHUlmDeutschland

Personalised recommendations