Advertisement

Keramische Zeitschrift

, Volume 69, Issue 1–2, pp 34–41 | Cite as

Bioaktive Glas-Scaffolds beschichtet mit Zein, einem pflanzlichen Protein: Entwicklung und Eigenschaften

  • J. Hum
  • J. Potschka
  • A.R. Boccaccini
Forschung & Technik
  • 4 Downloads

Kurzfassung

Die vorliegende Studie beschreibt die Beschichtung poröser Gerüststrukturen, sogenannter Scaffolds (auf Basis von 45S5 bioaktivem Glas), mit Zein, einem Speicherprotein gewonnen aus Mais. Da bioaktive Scaffolds durch ihren Herstellungsprozess Mikrorisse an der Oberfläche aufzeigen, sind ihre mechanischen Festigkeiten extrem schwach. Durch Auftragen einer Polymerschicht können diese Risse gefüllt und überbrückt werden, was zur Erhöhung der Bruchfestigkeit und -arbeit führt. Dazu werden gesinterte Glas-Scaffolds in eine Lösung aus Zein getaucht. Nach dem Abdampfen des Lösemittels bleibt ein dünner Polymerfilm von ~10 μm auf der Oberfläche zurück. Die Mikrostruktur und Morphologie wurde anschließend mit Rasterelektronenmikroskopie (REM) untersucht. Des Weiteren konnte durch Auslagerung in simulierte Körperflüssigkeit (SBF) der Einfluss der Beschichtung auf das bioaktive Verhalten der Scaffolds getestet werden. Der Nachweis für die Bildung von Hydroxylapatit wurde durch REM und Fourier-Transform-Infrarotspektrometrie (FTIR) erbracht. Auch konnte die Druckfestigkeit durch das Aufbringen einer Zeinschicht um den Faktor 5 erhöht werden.

Stichwörter:

Bioaktives Glas Zein Scaffolds 

Abstract

Bioactive Glass-based Scaffolds Coated with Zein, a Plant-derived Protein: Development and Characteristics

The present study describes the coating of porous scaffolds (based on 45S5 bioactive glass and produced by the foam replica method) with zein, a storage protein derived from corn. As bioactive scaffolds show microcracks on the surface, the mechanical performance is very weak. By applying a polymer layer, these cracks can be filled and bridged, which leads to enhanced fracture strength and toughness. Therefore, bioactive glass-based scaffolds are immersed in a zein solution. After evaporation of the solvent, a thin polymer film of ~10 μm remains on the surface. The microstructure and morphology were investigated by scanning electron microscopy (SEM). Furthermore, the influence of the coating on the bioactive behavior of the scaffolds was tested by immersion in simulated body fluid (SBF). The formation of hydroxyapatite was analyzed by SEM and Fourier Transform Infrared Spectrometry (FTIR). By applying a zein coating, the compressive strength was increased by factor 5.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    García-Gareta, E., Coathup, M.J., Blunn, G.W.: Osteoinduction of bone grafting materials for bone repair and regeneration. Bone 81 (2015) 112–121CrossRefGoogle Scholar
  2. 2.
    Dumic-Cule, I., Pecina, M., Jelic, M., Jankolija, M., Popek, I., Grgurevic, L., et al. Biological aspects of segmental bone defects management. Int. Orthop. 39 (2015) 1005–1011CrossRefGoogle Scholar
  3. 3.
    Woodard, J.R., Hilldore, A.J., Lan, S.K., Park, C.J., Morgan, A.W., Eurell, J.A.C., et al.: The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials 28 (2007) 45–54CrossRefGoogle Scholar
  4. 4.
    Sulaiman, S.B., Keong, T.K., Cheng, C.H., Saim, A.B., Idrus, R.B.H. Tricalcium phosphate/hydroxyapatite (TCP-HA) bone scaffold as potential candidate for the formation of tissue engineered bone. Indian J. Med. Res. 137 (2013) 1093–1101Google Scholar
  5. 5.
    Tarafder, S., Davies, N.M., Bandyopadhyay, A., Bose, S.: 3D printed tricalcium phosphate bone tissue engineering scaffolds: effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model. Biomater. Sci. 1 (2013) 1250CrossRefGoogle Scholar
  6. 6.
    Vallet-Regí, M., Ragel, C.V., Salinas, A.J. Glasses with Medical Applications. Europ. J. Inorg. Chem. 2003 (2003) 1029–1042CrossRefGoogle Scholar
  7. 7.
    Hench, L.L.: Opening paper 2015- Some comments on Bioglass: Four Eras of Discovery and Development. Biomed. Glas. 1 (2015)Google Scholar
  8. 8.
    Yunos, D.M., Bretcanu, O., Boccaccini, A.R. Polymer-bioceramic composites for tissue engineering scaffolds. J. Mater. Sci. 43 (2008) 4433–4442CrossRefGoogle Scholar
  9. 9.
    Chen, Q.Z., Thompson, I.D., Boccaccini, A.R. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 27 (2006) 2414–2425CrossRefGoogle Scholar
  10. 10.
    Corradini, E., Curti, P.S., Meniqueti, A.B., Martins, A.F., Rubira A.F., Muniz, E.C. Recent advances in food-packing, pharmaceutical and biomedical applications of zein and zein-based materials. Internat. J. Mol. Sci. 15 (2014) 22438–22470CrossRefGoogle Scholar
  11. 11.
    Dong, J., Sun, Q., Wang, J.Y.: Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials 25 (2004) 4691–4697CrossRefGoogle Scholar
  12. 12.
    Zhou, P., Xia, Y., Wang, J., Liang, C., Yu, L., Tang, W., et al.: Antibacterial properties and bioactivity of HACC- and HACC–Zein-modified mesoporous bioactive glass scaffolds. J. Mater. Chem. B. 1 (2013) 685CrossRefGoogle Scholar
  13. 13.
    Jiang, Q., Reddy, N., Yang, Y. Cytocompatible cross-linking of electrospun zein fibers for the development of water-stable tissue engineering scaffolds. Acta Biomater. 6 (2010) 4042–4051CrossRefGoogle Scholar
  14. 14.
    Yao, C., Li, X., Song, T. Electrospinning and crosslinking of zein nanofiber mats. J. Appl. Polym. Sci. 103 (2007) 380–385CrossRefGoogle Scholar
  15. 15.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27 (2006) 2907–2915CrossRefGoogle Scholar
  16. 16.
    Magoshi, J., Nakamura, S., Murakami, K.I. Structure and physical properties of seed proteins. I. Glass transition and crystallization of zein protein from corn. J. Appl. Polym. Sci. 45 (1992) 2043–2048Google Scholar
  17. 17.
    Filgueiras, M.R., La Torre, G., Hench, L.L. Solution effects on the surface reactions of a bioactive glass. J. Biomed. Mater. Res. 27 (1993) 445–453CrossRefGoogle Scholar
  18. 18.
    Mukundan, L.M., Nirmal, R., Vaikkath, D., Nair, P.D.: A new synthesis route to high surface area sol gel bioactive glass through alcohol washing: a preliminary study. Biomatter. 3 (2013)Google Scholar
  19. 19.
    Marelli, B., Ghezzi, C.E., Barralet, J.E., Boccaccini, A.R., Nazhat, S.N.: Three-dimensional mineralization of dense nanofibrillar collagen-bioglass hybrid scaffolds. Biomacromolecules 11 (2010) 1470–1479CrossRefGoogle Scholar
  20. 20.
    Müller, V., Piai, J.F., Fajardo, A.R., Fávaro, S.L., Rubira, A.F., Muniz, E.C.: Preparation and Characterization of Zein and Zein-Chitosan Microspheres with Great Prospective of Application in Controlled Drug Release. J. Nanomater. 2011 (2011) 6Google Scholar
  21. 21.
    Sessa, D.J., Mohamed, A., Byars, J.A. Chemistry and physical properties of melt-processed and solution-cross-linked corn zein. J. Agric. Food. Chem. 56 (2008) 7067–7075CrossRefGoogle Scholar
  22. 22.
    Ben-Nissan, B.: Advances in Calcium Phosphate Biomaterials. Berlin, Heidelberg: Springer (2014)Google Scholar
  23. 23.
    Koutsopoulos, S. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. J. Biomed. Mater. Res. 62 (2002) 600–612CrossRefGoogle Scholar
  24. 24.
    Stoch, A., Jastrzębski, W., Brożek, A., Trybalska, B., Cichocińska, M., Szarawara, E.: FTIR monitoring of the growth of the carbonate containing apatite layers from simulated and natural body fluids. J. Mol. Struct. 511–512 (1999) 287–294CrossRefGoogle Scholar
  25. 25.
    Rehman, I., Knowles, J.C., Bonfield, W. Analysis of in vitro reaction layers formed on Bioglass using thin-film X-ray diffraction and ATR-FTIR microspectroscopy. J. Biomed. Mater. Res. 41 (1998) 162–166CrossRefGoogle Scholar
  26. 26.
    Moustafa, Y.M., El-Egili, K. Infrared spectra of sodium phosphate glasses. J. Non. Cryst. Solids. 240 (1998) 144–153CrossRefGoogle Scholar
  27. 27.
    Cerruti, M., Greenspan, D., Powers, K.: Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Biomaterials 26 (2005) 1665–1674CrossRefGoogle Scholar
  28. 28.
    Oliveira, J.M., Silva, S.S., Malafaya, P.B., Rodrigues, M.T., Kotobuki, N., Hirose, M., et al.: Macroporous hydroxyapatite scaffolds for bone tissue engineering applications: physicochemical characterization and assessment of rat bone marrow stromal cell viability. J. Biomed. Mater. Res. A 91 (2009) 175–186CrossRefGoogle Scholar
  29. 29.
    Yusufoglu, Y., Akinc, M. Deposition of Carbonated Hydroxyapatite (CO3HAp) on Poly( Methylmethacrylate) Surfaces by Decomposition of Calcium-EDTA Chelate. J. Amer. Ceram. Soc. 91 (2008) 3147–3153CrossRefGoogle Scholar
  30. 30.
    Hench, L.L., Jones, J.R., Sepulveda, P.: Bioactive Materials for Tissue Engineering Scaffolds. Futur. Strateg. Tissue Organ Replace. Imperial College Press (2002) 3–24CrossRefGoogle Scholar
  31. 31.
    Dorozhkin, S., Ajaal, T. Toughening of porous bioceramic scaffolds by bioresorbable polymeric coatings. Proc. Inst. Mech. Eng. H. 223 (2009) 459–470CrossRefGoogle Scholar
  32. 32.
    Xue, W., Bandyopadhyay, A., Bose, S. Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering. J. Biomed. Mater. Res. B. Appl. Biomater. 91 (2009) 831–838CrossRefGoogle Scholar
  33. 33.
    Wu, C., Ramaswamy, Y., Boughton, P., Zreiqat, H.: Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(D,L-lactic acid) modification. Acta Biomater. 4 (2008) 343–53CrossRefGoogle Scholar
  34. 34.
    Yunos, D.M., Ahmad, Z., Salih, V., Boccaccini, A.R. Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass®-derived foams. J. Biomater. Appl. 27 (2013) 537–551CrossRefGoogle Scholar
  35. 35.
    Metze, A.L., Grimm, A., Nooeaid, P., Roether, J.A., Hum, J., Newby, P.J., et al. Gelatin Coated 45S5 Bioglass®-Derived Scaffolds for Bone Tissue Engineering. Key Eng. Mater. 541 (2013) 31–39CrossRefGoogle Scholar
  36. 36.
    Yao, Q., Nooeaid, P., Roether, J.A., Dong, Y., Zhang, Q., Boccaccini, A.R. Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram. Internat. 39 (2013) 7517–7522CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2017

Authors and Affiliations

  • J. Hum
    • 1
  • J. Potschka
    • 1
  • A.R. Boccaccini
    • 1
  1. 1.Lehrstuhl Biomaterialien, Department WerkstoffwissenschaftenUniversität Erlangen-NürnbergErlangenDeutschland

Personalised recommendations