Advertisement

The Psychological Record

, Volume 46, Issue 4, pp 707–728 | Cite as

Value Transfer in Discriminative Conditioning with Pigeons

  • Martina Siemann
  • Juan D. Delius
  • Daniela Dombrowski
  • Stefanie Daniel
Article

Abstract

The existence of a direct value transfer between stimuli in the context of instrumental discrimination learning is demonstrated. In a first experiment pigeons learned to discriminate instrumentally four successively presented target stimuli. Pecks to them were reinforced with graded amounts of reward and penalty (A++, B+, C-, D- -). These stimuli were accompanied by four different neutral stimuli (Na, Nb, Nc, Nd) but responses to these had no consequences. After discrimination of the target stimuli had been established the neutral stimuli were presented in pairs and in the absence of the target stimuli. These tests revealed a graded preference in accordance with the value transfer hypothesis. In a second experiment pigeons were taught to discriminate two target stimuli A+ and B-. Each of these was again accompanied by a neutral stimulus (Na, Nb). Pigeons developed a strong preference for Na. A discrimination reversal affecting the target stimuli (B+, A-) led to a strong reversed preference for Nb. A third experiment employed a similar design but in it one group of pigeons, unlike the control group, was prevented from pecking the neutral stimuli by transparent barriers. As both groups preferred the reward-related neutral stimulus with approximately equal strength it is concluded that classical conditioning, rather than pseudo-operant conditioning was responsible for the value transfer observed. A modification of an algebraic instrumental conditioning model incorporating an adventitious classical conditioning element is shown to emulate the value transfer obtained. The role of classical conditioning in instrumental discrimination learning is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BIEDERMAN, G. B., POULOS, C. X., & HEIGHINTON, G. A. (1976). Paradoxical preference for more frequently occurring negative stimuli and for less frequently occurring positive stimuli as a function of amount of training in simultaneous discrimination teaming. Learning and Motivation, 7, 603–613.CrossRefGoogle Scholar
  2. BROWN, P. L, & JENKINS, H. M. (1968). Auto-shaping of the pigeons key peck. The Journal of Experimental Analysis of Behavior, 11, 1–8.CrossRefGoogle Scholar
  3. COUVILLON, P., & BITTERMAN, M. E. (1992). A conventional conditioning analysis of “transitive inference” in pigeons. Journal of Experimental Psychology: Animal Behavior Process, 18, 308–310.Google Scholar
  4. DAVIS, H. (1992). Logical transitivity in animals. In W. K. Honig & J. G. Fetterman (Eds.), Cognitive aspects of stimulus control (pp. 405–429). Hillsdale, NJ: Erlbaum.Google Scholar
  5. DOMJAN, M. (1992). The principles of learning and behavior (3rd ed). Brooks-Cole: Belmont.Google Scholar
  6. FERSEN, L Von, WYNNE, C. L D., DELIUS, J. D., & STADDON, J. E. R. (1991). Transitive inference formation in pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 17, 334–341.Google Scholar
  7. GELLERMANN, C. W. (1933). Chance orders of alternating stimuli in visual discrimination experiments. Journal of Genetic Psychology, 42, 206–208.Google Scholar
  8. LUCE, D. R. (1959). Individual choice behavior. New York: Wiley.Google Scholar
  9. MACKINTOSH, N. J. (1974). The psychology of animal learning. London: Academic Press.Google Scholar
  10. MACKINTOSH, N. J. (1983). Conditioning and associative learning. Oxford: Oxford University Press.Google Scholar
  11. MOORE, B. R. (1973). The role of directed Pavlovian reactions in simple instrumental learning in the pigeon. In R. A. Hinde & J. Stevenson-Hinde (Eds.), Constraints on learning (pp. 159–186). London: Academic Press.Google Scholar
  12. PARISI, T., & MATTHEWS, T. J. (1975). Pavlovian determinants of the autoshaped keypeck response. Bulletin of the Psychonornic Society, 6, 527–529.CrossRefGoogle Scholar
  13. RESCORLA, R. A., & WAGNER, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning Ii: Current research and theory (pp. 64–99). New York: Appleton-Century-Crofts.Google Scholar
  14. RICHARDSON, W. K., & HANSEN, S. (1980). Autopecking with gross movement physically restrained. The Psychological Record, 30, 39–46.CrossRefGoogle Scholar
  15. RILLING, M. (1977). Stimulus control and inhibitory processes. In W. K. Honig & J. E. R. Staddon (Eds.), Handbook of operant behavior (pp. 432–480). Englewood Cliffs: Prentice Hall.Google Scholar
  16. SCHLOSBERG, H. (1934). Conditioned responses in the white rat. Journal of Genetic Psychology, 45, 303–305.Google Scholar
  17. SCHWARTZ, B., & GAMZU, E. (1977). Pavlovian control of operant conditioning. In W. K. Honig & J. E. R. Staddon (Eds.), Handbook of operant behavior (pp. 53–97). Englewood Cliffs: Prentice Hall.Google Scholar
  18. SHEFFIELD, F. D. (1965). Relation between classical conditioning and instrumental learning. In W. F. Prokasy (Ed.), Classical conditioning: A symposium (pp. 302–322). New York: Appleton-Century-Crofts.Google Scholar
  19. SIEMANN, M. (1993). Transitive Inferenz: Experimentelle Untersuchung einer kognitiven Leistung (Transitive inference, investigation of a cognitive performance). Universität Konstanz: Dissertation.Google Scholar
  20. SIEMANN, M. (1994). Überprüfung einfacher Modelle zum transitiven Schlußfolgern bei nonverbaler Aufgabenstellung (Test of a simple model of transitive inference using a nonverbal task). Zeitschrift für experimentelle und angewandte Psychologie, 41, 584–616.Google Scholar
  21. SIEMANN, M., DANIEL, D., DOMBROWSKI, D., & DELIUS, J. D. (1993). Value transfer in pigeon conditioning. In N. Eisner & M. Heisenberg (Eds.), Gene, brain, behavior (pp. 856). Stuttgart: Thieme.Google Scholar
  22. SIEMANN, M., & DELIUS, J. D. (1993). Implicit deductive responding in humans. Naturwissenschaften, 80, 363–366.CrossRefGoogle Scholar
  23. SIEMANN, M., & DELIUS, J. D. (1994). Processing of hierarchic Stimulus structures has advantages in humans and animals. Biological Cybernetics, 71, 531–536.CrossRefPubMedGoogle Scholar
  24. SIEMANN, M., & DELIUS, J. D. (1996a). Influence of task concreteness upon transitive responding in humans. Psychological Research (in press).Google Scholar
  25. SIEMANN, M., & DELIUS, J. D. (1996b). Algebraic learning and neural network models for transitive and nontransitive responding in humans and animals. Manuscript submitted for publication.Google Scholar
  26. SIEMANN, M., & DELIUS, J. D. (1996c). Overlearning and company revisited Manuscript submitted for publication.Google Scholar
  27. SIEMANN, M., DELIUS, J. D., & WRIGHT, A. A. (in press). Transitive responding in pigeons: influence of stimulus frequency and reinforcement history. Behavioral Processes.Google Scholar
  28. STEIRN, J. N., WEAVER, J. E., & ZENTALL, T. R. (1995). Transitive inference in pigeons and a test of value transfer theory. Animal Learning & Behavior, 23, 76–82.CrossRefGoogle Scholar
  29. TERRACE, H. S. (1966). Stimulus control. In W. K. Honig (Ed.), Operant behavior: Areas of research and application (pp. 271–344). New York: Appleton-Century-Crofts.Google Scholar
  30. WERNER, U., KÖPPL, U., & DELIUS, J. D. (1992). Transitive Inferenz bei nichtverbaler Aufgabendarbietung (Transitive inference with nonverbal task presentation). Zeitschrift für experimentelle and angewandte Psychologie, 39, 662–683.Google Scholar
  31. WILLIAMS, D. I. (1967). The overtraining reversal effect in the pigeon. Psychomic Science, 7, 261–262.CrossRefGoogle Scholar
  32. WILLIAMS, D. R., & WILLIAMS, H. (1969). Auto-maintenance in the pigeon: Sustained pecking despite contingent non-reinforcement. The Journal of the Experimental Analysis of Behavior, 12, 511–520.CrossRefPubMedGoogle Scholar
  33. WYNNE, C. D. L. (1995). Reinforcement accounts for transitive inference performance. Animal Learning & Behavior, 23, 207–217.CrossRefGoogle Scholar
  34. WYNNE, C. D. L, FERSEN, L Von, & STADDON, J. E. R. (1992). Pigeons’ inferences are transitive and the outcome of elementary conditioning principles: A response. Journal of Experimental Psychology: Animal Behavior Processes, 18, 313–315.Google Scholar
  35. XIA, L, DELIUS, J. D., & SIEMANN, M. (1996). A multiStimulus, portable and programmable conditioning panel for pigeons. Behavior Research Methods, Instruments, & Computers, 28, 49–54.CrossRefGoogle Scholar
  36. XIA, L, WYNNE, C. D. L, MÜNCHOW-POHL, E Von, & DELIUS, J. D. (1991). Psychobasic: A basic dialect for the control of psychological experiments with the Commodore 64 and Delà interfacing. Behavior Research Methods, Instruments & Computers, 23, 72–76.CrossRefGoogle Scholar
  37. YARCZOWER, M., & CURTO, K. (1972). Stimulus control in pigeons after extended discriminative training. Journal of Comparative and Physiological Psychology, 80, 484–489.CrossRefGoogle Scholar
  38. ZENTALL, T. R., & SHERBURNE, L. M. (1994). Transfer of value from S+ to S- in a simultaneous discrimination. Journal of Experimental Psychology: Animal Behavior Processes, 20, 1–8.Google Scholar

Copyright information

© Association of Behavior Analysis International 1996

Authors and Affiliations

  • Martina Siemann
    • 1
  • Juan D. Delius
    • 1
  • Daniela Dombrowski
    • 1
  • Stefanie Daniel
    • 1
  1. 1.Universität KonstanzUSA

Personalised recommendations