Advertisement

Activitas Nervosa Superior

, Volume 56, Issue 1–2, pp 1–16 | Cite as

The Neuroscience of Divergent Thinking

  • Mark A. RuncoEmail author
  • Sureyya Yoruk
Open Access
Review Article

Abstract

Creativity plays a role in innovation, development, and health. Recent research has used neuroscientific methods to study originality, novelty, insight, divergent thinking, and other processes related to creative mental activity. Findings indicate that both hemispheres are involved in divergent thinking, which is accompanied by both event-related increases and decreases in the neural activation. Divergent thinking seems to be associated with high neural activation in the central, temporal, and parietal regions, indications of semantic processing and re-combination of semantically related information. Most of the research in this area has been done in the last 10 years, and very likely refining and standardizing DT testing and scoring will lead to additional insights about creativity.

Key words

Consciousness Creativity Divergent Thinking Neural Correlates 

References

  1. Abraham, A., Thybusch, K.V. Pieritz, K. & Hermann, C. (2013). Gender differences in creative thinking: behavioral and fMRI findings. Brain Imaging and Behavior, 8(1), 39–51. doi: 10.1007/sll682-013-9241-4CrossRefGoogle Scholar
  2. Arden, R., Chavez, R. S., Grazioplene, R. & Jung, R. E. (2010). Neuroimaging creativity: A psychometric view. Behavioural Brain Research, 214(2), 143–156. doi: 10.1016/j.bbr.2010.05.015CrossRefPubMedGoogle Scholar
  3. Badzakova-Trajkov, G., Häberling, I. S. & Corballis, M. C. (2011). Magical ideation, creativity, handedness, and cerebral asymmetries: A combined behavioural and fMRI study. Neuropsychologia, 49, 2896–2903. doi: 10.1016/j.neuropsychologia.2011.06.016.CrossRefPubMedGoogle Scholar
  4. Bendat, J. S. & Piersol, A. G. (2000). Random data. Analysis and measurement procedures. New York, NY: Wiley.Google Scholar
  5. Benedek, M., Bergner, S., Konen, T., Fink, A. & Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49, 3505–3511. doi: 10.1016/j.neuropsychologia.2011.09.004.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benedek, M., Jauk, E., Fink, A., Koschutnig, K., Reishofer, G., Ebner, F. & Neubauer, A. C. (2014). To create or to recall? Neural mechanisms underlying the generation of creative new ideas. Neurolmage, 88, 125–133. doi: 10.1016/j.neuroimage.2013.11.021.CrossRefGoogle Scholar
  7. Benedek, M., Schickel, R. J., Jauk, E., Fink, A., Neubauer, A. C. (2014). Alpha power increases in right parietal cortex reflects focused internal attention. Neuropsychologia 56, 393–400. doi: 10.1016/j.neuropsychologia.2014.02.010.Google Scholar
  8. Binder, J. R., Desai, R. H., Graves, W. W., Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex 19(12), 2767–2796. doi: 10.1093/cercor/bhp055CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bowden, E. M., & Jung-Beeman, M. (2003). Normative data for 144 compound remote associate problems. Behavior Research Methods, Instruments, & Computers, 35, 634–639.CrossRefGoogle Scholar
  10. Danko, S. G., Shemyakina, N. V., Nagornova, Zh. V. & Starchenko, M. G. (2009). Comparison of the effects of the subjective complexity and verbal creativity on EEG spectral power parameters. Human Physiology, 35, 381–383. doi: 10.1134/S0362119709030153.CrossRefGoogle Scholar
  11. Dietrich, A. (2004). The cognitive neuroscience of creativity. Psychonomic Bulletin & Review 2004, 11 (6), 1011–1026.CrossRefGoogle Scholar
  12. Dietrich, A. & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822–848. doi: 10.1037/a0019749CrossRefPubMedGoogle Scholar
  13. Dow, G. T. & Mayer, R. E. (2004). Teaching students to solve insight problems: Evidence for domain specificity in creativity training. Creativity Research Journal, 16, 389–402.CrossRefGoogle Scholar
  14. Eichenbaum, H. (2002). The cognitive neuroscience of memory: An introduction. New York, NY: Oxford University Press.CrossRefGoogle Scholar
  15. Ellamil, M., Dobson, C., Beeman, M. & Christoff, K. (2012). Evaluative and generative modes of thought during the creative process. Neurolmage, 59, 1783–1794. doi: 10.1016/j.neuroimage.2011.08.008.CrossRefGoogle Scholar
  16. Fakhri, M., Sikaroodi, H., Maleki, F., Oghabian, F. M. & Hosein Ghanaati, H. (2012). Age-related frontal hyperactivation observed across different working memory tasks: An fMRI study. Behavioural Neurology, 25, 351–361. doi: 10.3233/BEN-2012-120280CrossRefPubMedGoogle Scholar
  17. Fink, A., & Neubauer, A. C. (2006). EEG alpha oscillations during the performance of verbal creativity tasks: Differential effects of sex and verbal intelligence. International Journal of Psychophysiology, 62, 46–53.CrossRefPubMedGoogle Scholar
  18. Fink, A., Grabner, R. H., Benedek, M., & Neubauer, A. C. (2006). Divergent thinking training is related to frontal electroencephalogram alpha synchronization. European Journal of Neuroscience, 23, 2241–2246.CrossRefPubMedGoogle Scholar
  19. Fink, A., Benedek, M., Grabner, R. H., Staudt, B. & Neubauer, A. C. (2007). Creativity meets neuroscience: Experimental tasks for the neuroscientific study of creative thinking. Methods, 42, 68–76. doi: 10.1016/j.ymeth.2006.12.001CrossRefPubMedGoogle Scholar
  20. Fink, A., & Neubauer, A. C. (2008). Eysenck meets Martindale: The relationship between extraversion and originality from the neuroscientific perspective. Personality and Individual Differences, 44, 299–310. doi:10.1016/j.paid.2007.08.010.CrossRefGoogle Scholar
  21. Fink, A., Graif, B., & Neubauer, A. C. (2009). Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers. Neurolmage, 46, 854–862. doi: 10.1016/j.neuroimage.2009.02.036.CrossRefGoogle Scholar
  22. Fink, A., Grabner, R. H., Benedek, M., Reishofer, G., Hauswirth, V., Fally, M., Neuper, C., Ebner, F., & Neubauer, A. C. (2009). The creative brain: Investigation of brain activity during creative problem solving by means of EEG and fMRI. Human Brain Mapping, 30, 734–748. doi: 10.1002/hbm.20538.CrossRefPubMedGoogle Scholar
  23. Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: Evidence from an fMRI study. Neurolmage, 52, 1687–1695. doi: 10.1016/j.neuroimage.2010.05.072.CrossRefGoogle Scholar
  24. Fink, A., Schwab, D., & Papousek, I. (2011). Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions. International Journal of Psychophysiology, 82, 233–239. doi: 10.1016/j.ijpsycho.2011.09.003.CrossRefPubMedGoogle Scholar
  25. Fink, A., Koschutnig, K., Benedek, M., Reishofer, G., Ischebeck, A., Elisabeth, M. Weiss, E. M. & Ebner, F. (2012). Stimulating Creativity via the Exposure to Other People’s Ideas. Human Brain Mapping, 33 2603–2610. doi: 10.1002/hbm.21387CrossRefPubMedGoogle Scholar
  26. Fink, A. & Benedek, M. (2013). EEG alpha power and creative ideation. Neuroscience and Biobehavioral Reviews. Retrieved from *http://dx.doi.Org/10.1016/j.neubiorev.2012.12.002.Google Scholar
  27. Gabora, L. (2010). Revenge of the “neurds”: Characterizing creative thought in terms of the structure and dynamics of memory. Creativity Research Journal, 22(1), 1–13. doi: 0.1080/10400410903579494.CrossRefGoogle Scholar
  28. Grabner, R. H., Fink, A., & Neubauer, A. C. (2007). Brain correlates of self-rated originality of ideas: Evidence from event-related power and phase-locking changes in the EEG. Behavioral Neuroscience, 121, 224–230. doi: 10.1037/0735–7044.121.1.224.CrossRefPubMedGoogle Scholar
  29. Gruber, H. E. (1981). On the relation between ‘a ha’ experiences and the construction of ideas. History of Science, 19, 41–59.CrossRefGoogle Scholar
  30. Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444–454.CrossRefPubMedGoogle Scholar
  31. Guilford, J.P. (1968). Creativity, intelligence and their educational implications. San Diego, CA: EDITS/Knapp.Google Scholar
  32. Gupta, N., Jang, Y., Mednick, S. C. & Huber, D. E. (2012). The Road Not Taken: Creative Solutions Require Avoidance of High-Frequency Responses. Psychological Science, 23, 1–7. doi: 10.1177/0956797611429710CrossRefGoogle Scholar
  33. Heeger, D. J. & Ress, D. (2002). What does fMRI tell us about neuronal activity? Nature Reviews Neuroscience, 3, 142–151. doi:10.1038/nrn730.CrossRefPubMedGoogle Scholar
  34. Heilman, K. M., Nadeau, S. E., & Beversdorf, D. O. (2003). Creative innovation: Possible brain mechanism. Neurocase, 9, 369–379.CrossRefPubMedGoogle Scholar
  35. Huettel, S. A., Song, A. W. & McCarthy, G. (2009). Functional Magnetic Resonance Imaging (2 ed.). Sunderland, MA: Sinauer Associates, Inc.Google Scholar
  36. Huang, P., Qiu, L., Shen, L., Zhang, Y., Song, Z., Qi, Z., Gong, Q. & Xie, P. (2013). Evidence for a left-over-right inhibitory mechanism during figurai creative thinking in healthy nonartists. Human Brain Mapping, 34, 2724–2732. doi: 10.1002/hbm.22093CrossRefPubMedGoogle Scholar
  37. Jauk, E., Benedek, M. & Neubauer. A. J. (2012). Tackling creativity at its roots: Evidence for different patterns of EEG alpha activity related to convergent and divergent modes of task processing. International Journal of Psychophysiology, 84, 219–225. doi:10.1016/j.ijpsycho.2012.02.012CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jausovec, N. (2000). Differences in cognitive processes between gifted, intelligent, creative, and average individuals while solving complex problems: An EEG study. Intelligence, 28, 213–237.CrossRefGoogle Scholar
  39. Jausovec, N., & Jausovec, K. (2000). EEG activity during the performance of complex mental problems. International Journal of Psychophysiology, 36, 73–88.CrossRefPubMedGoogle Scholar
  40. Kalbfleisch, M. L. (2008). Getting to the heart of the brain: Using cognitive neuroscience to explore the nature of human ability and performance. Roeper Review, 30, 162–170. doi: 10.1080/02783190802199321CrossRefGoogle Scholar
  41. Kalcher, J. & Pfurtscheller, G. (1995). Discrimination between phase-locked and non-phase-locked event-related EEG activity. Electroencephalography and clinical Neurophysiology, 94, 381–384.CrossRefPubMedGoogle Scholar
  42. Kleibeuker, S. W., Koolschijn, P. C., Jolies, D. D., De Dreu, C. K. & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7, 1–12. doi: 10.3389/fnhum.2013.00905CrossRefGoogle Scholar
  43. Klimesch, W., Sauseng, P. & Hanslmayr, S. (2007). EEG alpha oscillations: The inhibition-timing hypothesis. Brain Research Reviews, 53, 63–88. doi:10.1016/j.brainresrev.2006.06.003CrossRefPubMedGoogle Scholar
  44. Koberg, O. & Bagnall, T. (1974). The universal traveler: A soft-systems guide to: Creativity, problem-solving and the process of reaching goals. Menlo Park, CA: Crisp Publications, Inc.Google Scholar
  45. Langer, E. (1989). Mindfulness. Reading, MA: Addison-Wesley.Google Scholar
  46. Martindale, C. & Hines, D. (1975). creativity and cortical activation during creative, intellectual and EEG feedback tasks. Biological Psychology, 3, 91–100.CrossRefPubMedGoogle Scholar
  47. Martindale, C. & Hasenfus, N. (1978). EEG differences as a function of creativity, stage of the creative process, and effort to be original. Biological Psychology, 6, 157–167.CrossRefPubMedGoogle Scholar
  48. Martindale, C. (1999). Biological bases of creativity. In R. J. Sternberg (Ed.), Handbook of creativity (pp.137–152). New York: Cambridge University Press.Google Scholar
  49. Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69, 220–232.CrossRefPubMedGoogle Scholar
  50. Mendelsohn, G. A. (1976). Associative and attentional processes in creative performance. Journal of Personality, 44, 341–369.CrossRefGoogle Scholar
  51. Milgram, R. M., & Rabkin, L. (1980). Developmental test of Mednic’ s associative hierarchies of original thinking. Developmental Psychology, 16, 157–158.CrossRefGoogle Scholar
  52. Pfurtscheller, G. Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clinical Neurophysiology 110(11), 1842–57.CrossRefPubMedGoogle Scholar
  53. Pfurtscheller, G. (2001). Functional brain imaging based on ERD/ERS. Vision Research, 41 1257–1260.Google Scholar
  54. Ray, W. J. & Cole, H. W. (1985). EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science, 228, 750–752. doi: 10.1126/science.3992243CrossRefPubMedGoogle Scholar
  55. Razumnikova, O. M. (2000). Functional organization of different brain areas during convergent and divergent thinking: an EEG investigation. Cognitive Brain Research, 10, 11–18.CrossRefGoogle Scholar
  56. Razumnikova, O. M. (2004). Gender differences in hemispheric organization during divergent thinking: An EEG investigation in human subjects. Neuroscience Letters, 362, 193–195.CrossRefPubMedGoogle Scholar
  57. Razumnikova, O. M., Volf, N. V., & Tarasova, I. V. (2009). Strategy and results: Sex differences in electrographic correlates of verbal and figurai creativity. Human Physiology, 35, 285–294. doi: 10.1134/S0362119709030049CrossRefGoogle Scholar
  58. Runco, M. A. (Ed.). (1991). Divergent thinking. Norwood, NJ: Ablex Publishing Corporation.Google Scholar
  59. Runco, M. A. (Ed.). (2013). Divergent thinking and creative potential. Cresskill, NJ: Hampton Press.Google Scholar
  60. Runco, M. A., & Albert, R. S. (1985). The reliability and validity of ideational originality in the divergent thinking of academically gifted and nongifted children. Educational and Psychological Measurement, 45, 483–501.CrossRefGoogle Scholar
  61. Runco, M. A., & Okuda, S. M. (1991). The instructional enhancement of the ideational originality and flexibility scores of divergent thinking tests. Applied Cognitive Psychology, 5, 435–441.CrossRefGoogle Scholar
  62. Runco, M. A., & Richards, R. (Eds.). (1998). Eminent creativity, everyday creativity, andhealth. Norwood, NJ: Ablex.Google Scholar
  63. Runco, M. A., Millar, G., Acar, S., & Cramond, B. (2011). Torrance Tests of Creative Thinking aspredictors of personal and public achievement: A fifty year follow up. Creativity Research journal, 22, 361–368.CrossRefGoogle Scholar
  64. Runco, M. A., & Jaeger, G. (2012). The standard definition of creativity. Creativity Research Journal, 24, 92–96.CrossRefGoogle Scholar
  65. Sawyer, K. (2011). The cognitive neuroscience of creativity: A critical review. Creativity Research journal, 23, 137–154. doi: 10.1080/10400419.2011.571191.CrossRefGoogle Scholar
  66. Shah, C., Erhard, K., Ortheil, H., Kaza, E., Kessler, C. & Lotze, M. (2013). Neural correlates of creative writing: AnfMRI study. Human Brain Mapping, 34, 1088–1101. doi: 10.1002/hbm.21493CrossRefPubMedGoogle Scholar
  67. Shamay-Tsoory, S. G., Adler, N., Aharon-Peretz, J., Perry, D. & Mayseless, N. (2011). The origins of originality: The neural bases of creative thinking and originality. Neuropsychologia, 49, 178–185. doi: 10.1016/j.neuropsychologia.2010.11.020.CrossRefPubMedGoogle Scholar
  68. Shaw, G. A. (1992). Hyperactivity and creativity: The tacit dimension. Bulletin of the Psychonomic Society, 30(2), 157–160.CrossRefGoogle Scholar
  69. Simmons, W. K., Hamann, S. B., Harenski, C. L., Hu, X. P. & Barsalou, L. W. (2008). fMRI evidence for word association and situated simulation in conceptual processing. Journal of Physiology — Paris, 102, 106–119. doi: 0.1016/j.jphysparis.2008.03.014.CrossRefGoogle Scholar
  70. Srinivasan, R., Winter, W. R., Ding, J. & Nunez, P. L. (2007). EEG and MEG coherence: Measures of functional connectivity at distinct spatial scales of neocortical dynamics. Journal of Neuroscience Methods, 166, 41–52. doi: 10.1016/j.jneumeth.2007.06.026CrossRefPubMedPubMedCentralGoogle Scholar
  71. Staudt, B. & Neubauer, A. C. (2006). Achievement, underachievement and cortical activation: a comparative EEG study of adolescents of average and above-average intelligence. High Ability Studies, 17 (1), 3–16. doi: 10.1080/13598130600946855.CrossRefGoogle Scholar
  72. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y, Nagase, T., Nouchi, R. & Kawashima, R. (2011). Failing to deactivate: The association between brain activity during a working memory task and creativity. Neurolmage, 55, 681–687. doi:10.1016/j.neuroimage.2010.11.052.CrossRefGoogle Scholar
  73. Torrance, E. P. (1995). Why fly! Norwood, NJ: Ablex.Google Scholar
  74. Vartanian, O., Jobidon, M. E., Bouak, F., Nakashima, A., Smith, I., Lam, Q. & Cheung, B. (2013). Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience, 236, 186–194. doi: 10.1016/j.neuroscience.2012.12.060CrossRefPubMedGoogle Scholar
  75. Volf, N. V. & Tarasova, I. V. (2014). Electrophysiological parameters and the possibility of increasing imaginai creativity using monetary rewards. Neuroscience and Behavioral Physiology, 44 (3), 268–276. doi: 10.1007/S11055-014-9906-5.CrossRefGoogle Scholar
  76. Weisberg, R. W. (2013). On the “dõmystification” of insight: A critique of neuroimaging studies of insight. Creativity Research Journal, 25(1), 1–14. doi: 10.1080/10400419.2013.752178.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing 2014

Authors and Affiliations

  1. 1.Saybrook UniversitySan FranciscoUSA
  2. 2.University of GeorgiaAthensGreece

Personalised recommendations