# A Breather Construction for a Semilinear Curl-Curl Wave Equation with Radially Symmetric Coefficients

Original Paper

First Online:

- 38 Downloads
- 1 Citations

## Abstract

We consider the semilinear curl-curl wave equation For any p < 1 we prove the existence of time-periodic spatially localized real-valued solutions (breathers) both for the + and the - case under slightly different hypotheses. Our solutions are classical solutions that are radially symmetric in space and decay exponentially to 0 as |x| → ∞. Our method is based on the fact that gradient fields of radially symmetric functions are annihilated by the curl-curl operator. Consequently, the semilinear wave equation is reduced to an ODE with r = |x| as a parameter. This ODE can be efficiently analyzed in phase space. As a side effect of our analysis, we obtain not only one but a full continuum of phase-shifted breathers

$$s\left( x \right)\partial _t^2U + \nabla \times \nabla \times + q\left( x \right)U \pm V\left( x \right){\left| U \right|^{p - {\text{ 1}}}}U = 0for\left( {x,t} \right) \in {\mathbb{R}^3} \times \mathbb{R}.$$

*U(x; t + a(x))*, where*U*is a particular breather and*a*: ℝ3 → ℝ an arbitrary radially symmetric*C2*-function.## 2000 Mathematics Subject Classification

Primary: 35L71 Secondary: 34C25## Key words and phraes

Axially symmetric gravitational fields boundary value problem existence and uniqueness of solutions## Preview

Unable to display preview. Download preview PDF.

## References

- [1]M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur,
*Method for solving the sine-Gordon equation*. Phys. Rev. Lett.**30**(1973), 1262–1264.MathSciNetCrossRefGoogle Scholar - [2]G. T. Adamashvili and D. J. Kaup,
*Optical breathers in nonlinear anisotropic and dispersive media*. Phys. Rev. E**73**(2006), 066613.MathSciNetCrossRefzbMATHGoogle Scholar - [3]Stanley Alama and Yan Yan Li,
*Existence of solutions for semilinear elliptic equations with indefinite linear part*. J. Differential Equations**96**(1992), 89–115.MathSciNetCrossRefzbMATHGoogle Scholar - [4]Antonio Azzollini, Vieri Benci, Teresa D’Aprile, and Donato Fortunato,
*Existence of static solutions of the semilinear maxwell equations*. Ricerche di Matematica**55**(2006), 123–137.MathSciNetCrossRefzbMATHGoogle Scholar - [5]Th. Bartsch and J. Mederski,
*Nonlinear time-harmonic maxwell equations in an anisotropic bounded medium*. arXiv:1509.01994[math.AP].Google Scholar - [6]Thomas Bartsch, Tomáš Dohnal, Michael Plum, and Wolfgang Reichel,
*Ground states of a nonlinear curl-curl problem in cylindrically symmetric media*. NoDEA Nonlinear Differential Equations Appl.**23**(2016), 23–52.MathSciNetCrossRefzbMATHGoogle Scholar - [7]Vieri Benci and Donato Fortunato,
*Towards a unified field theory for classical electrodynamics*. Arch. Ration. Mech. Anal.**173**(2004), 379–414.MathSciNetCrossRefzbMATHGoogle Scholar - [8]H. Berestycki and P.-L. Lions,
*Nonlinear scalar field equations. I. Existence of a ground state*. Arch. Rational Mech. Anal.**82**(1983), 313–345.MathSciNetzbMATHGoogle Scholar - [9]Bjöorn Birnir, Henry P. McKean, and Alan Weinstein,
*The rigidity of sine-Gordon breathers*. Comm. Pure Appl. Math.**47**(1994), 1043–1051.MathSciNetCrossRefzbMATHGoogle Scholar - [10]Carsten Blank, Martina Chirilus-Bruckner, Vincent Lescarret, and Guido Schneider,
*Breather solutions in periodic media*. Comm. Math. Phys.**302**(2011), 815–841.MathSciNetCrossRefzbMATHGoogle Scholar - [11]Martina Chirilus-Bruckner and Clarence Eugene Wayne,
*Inverse spectral theory for uniformly open gaps in a weighted Sturm-Liouville problem*. J. Math. Anal. Appl.**427**(2015), 1168–1189.MathSciNetCrossRefzbMATHGoogle Scholar - [12]Teresa D’Aprile and Gaetano Siciliano,
*Magnetostatic solutions for a semilinear perturbation of the Maxwell equations*. Adv. Differential Equations**16**(2011), 435–466.MathSciNetzbMATHGoogle Scholar - [13]Jochen Denzler,
*Nonpersistence of breather families for the perturbed sine Gordon equation*. Comm. Math. Phys.**158**(1993), 397–430.MathSciNetCrossRefzbMATHGoogle Scholar - [14]A. Hirsch and W. Reichel,
*Existence of cylindrically symmetric ground states to a nonlinear curl-curl equation with non-constant coefficients*. arXiv:1606.04415[math.AP].Google Scholar - [15]Guillaume James, Bernardo Sánchez-Rey, and Jesúus Cuevas,
*Breathers in inhomogeneous nonlinear lattices: an analysis via center manifold reduction*. Rev. Math. Phys.**21**(2009), 1–59.MathSciNetCrossRefzbMATHGoogle Scholar - [16]R. S. MacKay and S. Aubry,
*Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators*. Nonlinearity**7**(1994), 1623–1643.MathSciNetCrossRefzbMATHGoogle Scholar - [17]Jaros law Mederski,
*Ground states of time-harmonic semilinear Maxwell equations in ℝ3 with vanishing permittivity*. Arch. Ration. Mech. Anal.**218**(2015), 825–861.MathSciNetCrossRefzbMATHGoogle Scholar - [18]A. Pankov,
*Periodic nonlinear Schrödinger equation with application to photonic crystals*. Milan J. Math.**73**(2005), 259–287.MathSciNetCrossRefzbMATHGoogle Scholar - [19]Dmitry E. Pelinovsky, Gideon Simpson, and Michael I. Weinstein,
*Polychromatic solitary waves in a periodic and nonlinear Maxwell system*. SIAM J. Appl. Dyn. Syst.**11**(2012), 478–506.MathSciNetCrossRefzbMATHGoogle Scholar - [20]Walter A. Strauss,
*Existence of solitary waves in higher dimensions*. Comm. Math. Phys.**55**(1977), 149–162.MathSciNetCrossRefzbMATHGoogle Scholar

## Copyright information

© Orthogonal Publishing and Springer International Publishing 2016