Advertisement

Journal of Plant Diseases and Protection

, Volume 121, Issue 3, pp 105–116 | Cite as

Copper reducing strategies for late blight (Phytophthora infestans) control in organic potato (Solanum tuberosum) production

  • Lars-Wilhelm Bangemann
  • Andreas Westphal
  • Peter Zwerger
  • Klaus Sieling
  • Henning Kage
Article

Abstract

In organic potato (Solanum tuberosum) production in Europe, solely copper-based fungicides allow to directly control late blight (caused by Phytophthora infestans). Due to environmental concerns, the use of copper (Cu) fungicides has to be as efficiently as possible to reduce annual consumption. This can be achieved either by reducing the dose per application or by decreasing the numbers of sprays. Between 2005 to 2009, six field trials were conducted at two sites (3 each) in northern Germany in order to (a) determine the efficacy of a copper fungicide (copper hydroxide) at reduced rates compared to the common practise of the most important German organic farmers’ associations (3 kg Cu ha−1), and (b) to evaluate the copper reduction potential of an application strategy based on a decision support system (DSS). A clear dose-response relationship with reduced rates of copper hydroxide was not consistent over trials and strategies although there was clear evidence for a considerable potential to reduce Cu rates compared to the amount of 3 kg Cu ha−1. However, different degrees of late blight pressure strongly affected the efficacy of the Cu fungicide in individual years. Under less late blight pressure, a reduction to 1.25 kg Cu ha−1 applied throughout the season was possible without significant loss in efficacy compared to the typical spraying of 2.5 or 3.0 kg Cu ha−1. Due to a higher risk of decreasing efficacy, reducing Cu hydroxide supply was only possible to an amount of 2.0–2.5 kg Cu ha−1 under moderate disease pressure while high late blight pressure in 2007 did not allow a Cu reduction to this extent. Even the highest amount of 3.0 kg Cu ha−1 only decreased the disease by 18% in one single case. Consequently, yields were not consistent, but depended on year, site and late blight pressure. On average over rates and strategies, Cu application increased yields by 15%. In addition, the results revealed the clear tendency that reducing Cu amounts did not impair tuber yield. A spray schedule based on the new German DSS ÖKOSIMPHYT increased effectiveness of Cu sprays, reduced numbers of sprays and the total amount of Cu per year, even under moderate and high late blight pressure. Therefore, we conclude that the DSS has the potential for further optimization. Knowledge of actual late blight pressure, as provided by ÖKOSIMPHYT, is necessary to optimize the use of Cu fungicides allowing both to ensure the site-specific tuber yield potential and to reduce the CU application amounts.

Key words

Copper-based fungicide decision support system organic farming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott WS, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18, 265–267.CrossRefGoogle Scholar
  2. AMI, 2009. Marktbilanz Kartoffeln 2009, Agrar Informations Gesellschaft mbH, Bonn.Google Scholar
  3. Anonymous, 2002. Efficacy evaluation of fungicides Phytophthora infestans on potato. Eur. Mediterr. Plant Prot. Org.Google Scholar
  4. Anonymous, 2005. European cultivated potato database. Variety descriptions for cv. DITTA. (http://www.europotato.org, 5.10.2009).Google Scholar
  5. Anonymous, 2008. Commission Regulation (EC) No 889/2008 of 5 September 2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. (http://www.ec.europa.eu/agriculture/organic/organicfarming/what-organic_en, 09.01.2010).Google Scholar
  6. Anonymous, 2009. Commission Directive 2009/37/EC. (http://www.eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:104:0023:0032:EN:PDF, 09.01.2010).Google Scholar
  7. Bangemann L-W, Benker M, Kleinhenz B, Zellner M & Bartels G, 2007. Late blight control by using a decision support system in organic potato cultivation. In: Hannukkala, A & Segerstedt, M (Eds.), New and old pathogens of potato in changing climate. Proceedings of the EAPR Pathology Section seminar, 2–6 July 2007, Hattula, Finland. Agrifood Research Working papers 142, 45–46.Google Scholar
  8. BBCH, 2001. Growth stages of mono-and dicotyledonous plants. BBCH Monograph. Federal Biological Research Centre for Agriculture and Forestry.Google Scholar
  9. Blaeser P, 1999. Isolierung und Charakterisierung von Pflanzeninhaltsstoffen mit fungizider Wirkung. Ph.D. Thesis. Institut für Pflanzenkrankheiten, Universität Bonn, Shaker Publishing, Aachen.Google Scholar
  10. Böhm H & Cerny D, 2002. Effects of different plant protection treatments regulating Late Blight (Phytophthora infestans) in organic potato production. In: Wenzel, G & Wulfert, I (Eds.), 15th Triennial Conference of the European Association for Potato Research (EAPR), Potatoes Today and Tomorrow, 14–19 July 2002, Hamburg, Germany. Abstracts of Papers and Posters, Supplement I, 208.Google Scholar
  11. Bourke PMA, 1959. Meteorology and the timing of fungicide applications against potato blight. Int J Biometeorol 3, 71–78.Google Scholar
  12. Cooke LR, Schepers HTAM, Hermansen A, Bain RA, Bradshaw NJ, Ritchie F, Shaw DS, Evenhuis A, Kessel GJT, Wander JGN, Andersson B, Hansen JG, Hannukkala A & Nærstad R & Nielsen BJ, 2011. Epidemiology and integrated control of potato Late Blight in Europe. Potato Res 54, 183–222.CrossRefGoogle Scholar
  13. Dubois J & Duvauchelle S, 2002. Research on alternatives to copper in the protection against potato Late Blight in biological production. In: Westerdijk, CE & Schepers, HTAM (Eds.), Seventh Workshop of an European Network for development of an Integrated Control Strategy of potato blight. 2–6 October 2002, Poznan, Poland. PPO-Special Report 9, 2003, 225–228.Google Scholar
  14. Dubois J & Duvauchelle S, 2005. How to decrease input of copper to control the Late Blight in organic crop with “organic MILPV”. In: Westerdijk, CE & Schepers, HTAM (Eds.), Ninth Workshop of an European Network for development of an integrated control startegy of potato Late Blight. 19–23 October 2005, Tallin, Estonia. PPO-Special Report 11, 229–236.Google Scholar
  15. Dorn B, Nusa-Steenblock T & Forrer H, 2007. Control of late blight in organic potato production. Evaluation of copperfree preparations under field, growth chamber and laboratory conditions. Eur J Plant Path 119, 217–240.CrossRefGoogle Scholar
  16. Felgentreu D, 2013. Einfluss von Kupfer auf die Aktivität von Mikroorganismen in ausgewählten Böden deutscher Weinbaugebiete. J Kulturpflaneznwiss 65, 466–478.Google Scholar
  17. Finckh MR, Schulte-Geldermann E & Bruns C, 2006. Challenges to organic potato farming: disease and nutrient management. Potato Res 49, 27–42.CrossRefGoogle Scholar
  18. Ghorbani R, Wilcockson S & Leifert C, 2005. Alternative treatments for Late Blight control in organic potato: Antagonistic micro-organisms and compost extracts for activity against Phytophthora infestans. Potato Res 48, 181–189.CrossRefGoogle Scholar
  19. Harrison JG, 1994. Factors involved in the development of potato Late Blight disease (Phytophthora infestans). In: Haverkort, AJ & MacKerron, DKL (Eds.) Potato ecology and modelling of crops under conditions limiting growth. Kluwer Academic Publishers, Dordrecht, Netherlands, 215–236.Google Scholar
  20. Haverkort AJ & Bicamumpaka M, 1986. Correlation between intercepted radiation and yield of potato crops infested by Phytophthora infestans in Central-Africa. Neth J Plant Pathol 92, 239–247.CrossRefGoogle Scholar
  21. Irla E, Anken T, Krebs H & Ruegg J, 2001. Optimierung der Spritztechnik in Biokartoffeln — Neue Technik erfolgreicher gegen Krautfäule. FAT-Berichte Nr. 561/2001, 1–8.Google Scholar
  22. Jänsch S & Römbke J, 2009. Einsatz von Kupfer als Pflanzenschutzmittel-Wirkstoff: Ökologische Auswirkungen der Akkumulation von Kupfer im Boden. Forschungsbericht 360 03 040. (http://www.umweltbundesamt.de, 09.01.2010).Google Scholar
  23. Jörg E, Kleinhenz B & Preiβ U, 2003. Decision support systems for the control of Late Blight (Phytophthora infestans) of potato. In: Maček, J (Ed.). Lectures and Papers presented at the 6th Slovenian Conference on Plant Protection, 4–6 March 2003, Zreče, Slovenia. Plant Protection Society of Slovenia, 187–192.Google Scholar
  24. Kainz M & Möller K, 2003. Ansätze zur Reduzierung der Kupferaufwandmengen im ökologischen Kartoffelbau. In Freyer, B. (Ed.), Beiträge zur 7. Wissenschaftstagung zum Ökologischen Landbau, “Ökologischer Landbau der Zukunft”, 23–26 February 2003, Wien Austria. Universität für Bodenkultur in Wien — Institut für ökologischen Landbau, 553-548.Google Scholar
  25. Krebs H, Vogelsang S & Forrer HR, 2013. Phosphonat zur Bekämpfung der Phytophthora infestans bei Kartoffeln — eine mögliche Alternative zu Kupfer? In: Neuhoff D, Stumm C, Ziegler G, Rahmann G, Hamm U & Köpke U (Eds.), Ideal und Wirklichkeit — Perspektiven ökologischer Landbewirtschaftung. Beiträge zur 12. Wissenschaftstagung Ökologischen Landbau, 5–8 March 2013, Bonn, Germany. Verlag Dr. Köster, Berlin. 270–273.Google Scholar
  26. Kühne S, Strassemeyer J & Roβberg D, 2009. Anwendung kupferhaltiger Pflanzenschutzmittel in Deutschland. J Kulturpflanz 61, 126–130.Google Scholar
  27. Kula C, 1999. Auswirkungen von Kupfer auf die terrestrische Flora und Fauna. In: Pflanzenschutz im ökologischen Landbau — Probleme und Lösungsansätze, Berichte aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft 53, 38–43.Google Scholar
  28. Meyercordt A, Scholvin A, Seidel K, Peters R & Michel V, 2013. Prüfung von Kartoffelsorten auf deren besondere Eignung für den Ökologischen Landbau. Abschlussbericht zum Vorhaben BOEL 2809OE001 (http://www.orgprints.org/23192, 30.01.2014).Google Scholar
  29. Möller K, Habermeyer J, Zinkernagel V & Reents HJ, 2006. Impact and interaction of nitrogen and Phytophthora infestans as yield-limiting and yield-reducing factors in organic potato (Solanum tuberosum L.) crops. Potato Res 49, 281–301.CrossRefGoogle Scholar
  30. Musa-Steenblock T & Forrer H-R, 2005. Bio-PhytoPRE — ein Warn- und Prognosesystem zur Bekämpfung der Krautund Knollenfäule im ökologischen Kartoffelanbau in der Schweiz. In: Heβ, J & Rahmann, G (Eds.), Ende der Nische. Beiträge zur 8. Wissenschaftstagung zum Ökologischen Landbau “Ökologischer Landbau der Zukunft”, 1–4 March 2005, Kassel, Germany. Kassel University Press GmbH, Kassel. 133–136.Google Scholar
  31. Neuhoff D, Tadesse M & Köpke U, 2006. Nutzung von Braunalgenextrakten (Ascophyllum nodosum) zur Kontrolle der Krautfäule (Phytophthora infestans) im ökologischen Kartoffel-und Tomatenanbau. Landwirtschaftliche Fakultät der Universität Bonn, Schriftenreihe des Lehr- und Forschungsschwerpunktes USL, 133, 45–46.Google Scholar
  32. Shaner G & Finney RE, 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopath 67, 1051–1056.CrossRefGoogle Scholar
  33. Shietenberg D, Bergeron AG, Fry WE & Ewing EE, 1990. Development and evaluation of a general model for yield loss assessment in potatoes. Phytopathology 80, 466–472.CrossRefGoogle Scholar
  34. Speiser B, Tamm L, Amsler T, Lambion J, Bertrand C, Hermansen A, Ruissen T, Haaland P, Zarb J, Santos J, Shotton P, Wilcockson S, Juntharathep P, Ghorbani R & Leifert C, 2006. Improvement of Late Blight management in organic potato production systems in Europe: Field tests with more resistant varieties and copper-based fungicides. Biol Agric Hortic 23, 393-341.Google Scholar
  35. Stone A & Baker B, 2009. Organic managemant of Late Blight of potato and tomato with copper products. (http://www.extension.org/article/18351, 08.01.2010).Google Scholar
  36. Tamm L, Smit AB, Hospers M, Janssens SRM, Buurma JS, Molgaard J-P, Laerke PE, Hansen HH, Hermans A, Boedker L, Bertrand C, Lambion J, Finck MR, Schüler C, Lammerts van Bueren E, Ruissen T, Nielsen BJ, Solberg S, Speiser B, Wolfe MS, Phillips S, Wilcoxon SJ & Leifert C, 2004. Assessment of the socio-economic impact of late blight and state of the art of management in European organic potato production systems. FiBl Report 106. Research Institute of Organic Agriculture FiBL, Frick, Switzerland, 5–8.Google Scholar
  37. Wohlleben S & Bartels G, 2005a. Regulierung der Krautfäule (Phytophthora infestans) mit reduzierten Kupfer-Aufwandmengen im Kartoffelanbau. In: Heβ, J & Rahmann, G (Eds.), Ende der Nische. Beiträge zur 8. Wissenschaftstagung zum Ökologischen Landbau “Ökologischer Landbau der Zukunft”, 1–4 March 2005, Kassel, Germany. Kassel University Press GmbH, Kassel, 143–144.Google Scholar
  38. Wohlleben S & Bartels G, 2005b. Regulierung der Kraut- und Knollenfäule im ökologischen Landbau durch Verwendung resistenter Sorten und Unterblattspritzungen mit reduzierter Kupfer-Aufwandmenge. Abschlussbericht zum Forschungsauftrag 02OE077. BÖL (Bundesprogramm ökologischer Landbau), Bonn. (http://www.orgprints.org/4744, 09.01.2010).Google Scholar
  39. Zarb J, Ghorbani R, Juntharathep P, Shotton P, Santos J, Wilcockson S & Leifert C, 2002. Control strategies for Late Blight in organic potato production. In: Powell, J (Ed.), UK Organic Research 2002: Proceedings of the COR Conference, 26–28 March 2002, Aberystwyth, UK, 221–222.Google Scholar
  40. Zellner M, 2004. Zur Epidemiologie und Bekämpfung von Phytophthora-Primärbefall an Kartoffeln. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft 396, 189.Google Scholar
  41. Zellner M, Keil S, Benker M, Kleinhenz B & Bangemann LW, 2007. Development, evaluation and realization of the prognosis-system ÖKO-Simphyt to control potato Late Blight in organic farming with reduced use of copper. BÖL (Bundesprogramm ökologischer Landbau), Bonn. (http://www.orgprints.org/13182/1/13182-03OE553-lfl-bayern-zellner-2007-oekosimphyt.pdf, 09.01.2010).Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2014

Authors and Affiliations

  • Lars-Wilhelm Bangemann
    • 1
  • Andreas Westphal
    • 1
  • Peter Zwerger
    • 1
  • Klaus Sieling
    • 2
  • Henning Kage
    • 2
  1. 1.JKI — Federal Research Centre for Cultivated PlantsInstitute for Plant Protection in Field Crops and GrasslandBraunschweigGermany
  2. 2.Institute of Crop Science and Plant BreedingChristian-Albrechts-University KielKielGermany

Personalised recommendations