Journal of Plant Diseases and Protection

, Volume 118, Issue 1, pp 17–25 | Cite as

A rapid and simple method for determining fungicide resistance in Botrytis

  • Roland W. S. WeberEmail author
  • Matthias Hahn


A simple test based on the germination of conidia of Botrytis on agar media augmented with various fungicides has been developed. Average concentrations causing a 50% reduction of germ-tube growth (EC50) of highly sensitive isolates were determined on 1% malt extract agar (thiophanate-methyl 0.090 ppm; iprodione 0.566 ppm; fludioxonil 0.026 ppm; fenhexamid 0.144 ppm), 1% malt extract agar with 100 ppm salicyl hydroxamic acid (QoI fungicides, viz. trifloxystrobin 0.009 ppm; pyraclostrobin 0.013 ppm; azoxystrobin 0.087 ppm), 0.5% yeast extract agar (boscalid 0.069 ppm) and 0.5% sucrose agar (cyprodinil 0.053 ppm). In order to detect different levels of resistance against these various fungicides, two discriminatory concentrations were identified for each compound. A routine assay method was developed in which drops of a conidial suspension harvested directly from diseased plant material or sporulating cultures were incubated on each of 20 different agar media. Because of a very short time-span of 24–48 h between sample collection and evaluation of results, field-specific information on the occurrence, frequency and types of resistance of Botrytis against common botryticides in soft-fruit production may be generated prior to the main fungicide spray season at blossom time.

Key words

Boscalid cyprodinil fenhexamid fludioxonil grey mould iprodione QoI fungicides thiophanate-methyl 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banno S, Yamashita K, Fukimori F, Okada K, Uekusa H, Takagaki M, Kimura M & Fujimura M, 2009. Characterization of QoI resistance in Botrytis cinerea and identification of two types of mitochondrial cytochrome b gene. Plant Pathol 58, 120–129.CrossRefGoogle Scholar
  2. Chapeland F, Fritz R, Lanen C, Gredt M & Leroux P, 1999. Inheritance and mechanisms of resistance to anilinopyrimidine fungicides in Botrytis cinerea. Pest Biochem Physiol 64, 85–100.CrossRefGoogle Scholar
  3. De Miccolis Angelini RM, Habib W, Rotolo C, Pollastro S & Faretra F, 2010. Selection, characterization and genetic analysis of laboratory mutants of Botryotinia fuckeliana (Botrytis cinerea) resistant to the fungicide boscalid. Eur J Plant Pathol 128, 185–199.CrossRefGoogle Scholar
  4. Fillinger S, Leroux P, Auclair C, Barreau C, al Hajj C & Debieu D, 2008. Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Antimicrob Agents Chemother 52, 3933–3940.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ishii H & Takeda H, 1989. Differential binding of a N-phenylformamidoxime compound in cell-free extracts of benzimidazole- resistant and -sensitive isolates of Venturia nashicola, Botrytis cinerea and Gibberella fujikuroi. Neth J Plant Pathol 95 (Suppl. 1), 99–108.CrossRefGoogle Scholar
  6. Kretschmer M, Leroch M, Mosbach A, Walker A-S, Fillinger S, Mernke D, Schoonbeek H-J, Pradier J-M, Leroux P, de Waard MA & Hahn M, 2009. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog 5, e1000696.Google Scholar
  7. LaMondia JA & Douglas SM, 1997. Sensitivity of Botrytis cinerea from Connecticut greenhouses to benzimidazole and dicarboximide fungicides. Plant Dis 81, 729–732.CrossRefGoogle Scholar
  8. Leroch M, Kretschmer M & Hahn M, 2011. Fungicide resistance phenotypes of Botrytis cinerea isolates from commercial vineyards in South West Germany. J Phytopathol 159, (63–65).CrossRefGoogle Scholar
  9. Leroux P, 2007. Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P & Delen N (Eds.): Botrytis: Biology, pathology and control, Springer, Dordrecht, 195–222.CrossRefGoogle Scholar
  10. Leroux P & Gredt M, 1995. Étude in vitro de la résistance de Botrytis cinerea aux fongicides anilinopyrimidines. Agronomie 15, 367–370.CrossRefGoogle Scholar
  11. Leroux P, Debieu D, Albertini C, Arnold A, Bach J, Chapeland F, Fournier E, Fritz R, Gredt M, Giraud T, Hugon M, Lanen C, Malosse C & Thebaud G, 2002. The hydroxyanilide botryticide fenhexamid: mode of action and mechanism of resistance. In: Dehne H-W, Gisi U, Kuck KH, Russel PE & Lyr H (Eds): Modern Fungicides and Antifungal Compounds III, AgroConcept, Bonn, 29–40.Google Scholar
  12. Leroux P, Gredt M, Leroch M & Walker A-S, 2010. Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Appl Environ Microbiol 76, 6615–6630.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Markoglou AN, Malandrakis AA, Vitoratos AG & Ziogas BN, 2006. Characterization of laboratory mutants of Botrytis cinerea resistant to QoI fungicides. Eur J Plant Pathol 115, 149–162.CrossRefGoogle Scholar
  14. Mondal SN, Bhatia A, Shilts T & Timmer LW, 2005. Baseline sensitivities of fungal pathogens of fruit and foliage of citrus to azoxystrobin, pyraclostrobin, and fenbuconazole. Plant Dis 89, 1186–1194.CrossRefGoogle Scholar
  15. Myresiotis CK, Karaoglanidis GS & Tzavella-Klonari K, 2007. Resistance of Botrytis cinerea isolates from vegetable crops to anilinopyrimidine, phenylpyrrole, hydroxyanilide, benzimidazole, and dicarboximide fungicides. Plant Dis 91, 407–413.CrossRefGoogle Scholar
  16. Myresiotis CK, Bardas GA & Karaoglanidis GS, 2008. Baseline sensitivity of Botrytis cinerea to pyraclostrobin and boscalid and control of anilinopyrimidine- and benzimidazole-resistant strains by these fungicides. Plant Dis 92, 1427–1431.CrossRefGoogle Scholar
  17. Northover J & Matteoni JA, 1986. Resistance of Botrytis cinerea to benomyl and iprodione in vineyards and greenhouses after exposure to the fungicides alone or mixed with captan. Plant Dis 70, 398–402.CrossRefGoogle Scholar
  18. Pommer E-H & Lorenz G, 1995. Dicarboximide fungicides. In: Lyr H (Ed.): Modern selective fungicides, Gustav Fischer, Jena, 99–118.Google Scholar
  19. Puhl I & Treutter D, 2008. Ontogenetic variation of catechin biosynthesis as basis for infection and quiescence of Botrytis cinerea in developing strawberry fruits. J Plant Dis Protect 115, 247–251.Google Scholar
  20. Sholberg PL, Bedford KE & Stokes S, 2003. Effect of preharvest application of cyprodinil on postharvest decay of apples caused by Botrytis cinerea. Plant Dis 87, 1067–1071.CrossRefGoogle Scholar
  21. Stammler G & Speakman J, 2006. Microtiter method to test the sensitivity of Botrytis cinerea to boscalid. J Phytopathol 154, 508–510.CrossRefGoogle Scholar
  22. Sutton JC, 1998. Botrytis fruit rot (gray mold) and blossom blight. In: Maas JL (Ed.): Compendium of strawberry diseases, APS Press, St. Paul, 28–31.Google Scholar
  23. Suty A, Pontzen R & Stenzel K, 1999. Fenhexamid-sensitivity of Botrytis cinerea: determination of baseline sensitivity and assessment of the risk of resistance. Bayer Pflanzensch-Nachr 52, 145–157.Google Scholar
  24. Weber RWS, 2010a. Schnelle und einfache Methode zum Nachweis der Fenhexamid-Resistenz bei Botrytis. Erw-Obstb 52, 27–32.CrossRefGoogle Scholar
  25. Weber RWS, 2010b. Occurrence of Hyd R3 fenhexamid resistance among Botrytis isolates in Northern German soft fruit production. J Plant Dis Protect 117, 177–179.Google Scholar
  26. Weber RWS & Pitt D, 2001. Filamentous fungi — growth and physiology. In: Khachatourians GG & Arora DK (Eds.): Applied mycology and biotechnology Vol. 1: Agriculture and food production, Elsevier, Amsterdam, 13–54.CrossRefGoogle Scholar
  27. Wise KA, Bradley CA, Pasche JS, Gudmestad NC, Dugan FM & Chen W, 2008. Baseline sensitivity of Ascochyta rabiei to azoxystrobin, pyraclostrobin, and boscalid. Plant Dis 92, 295–300.CrossRefGoogle Scholar
  28. Yarden O & Katan T, 1993. Mutations leading to substitutions at amino acids 198 and 200 of beta-tubulin that correlate with benomyl-resistance phenotypes of field strains of Botrytis cinerea. Phytopathology 83, 1478–1483.CrossRefGoogle Scholar
  29. Yourman LF & Jeffers SN, 1999. Resistance to benzimidazole and dicarboximide fungicides in greenhouse isolates of Botrytis cinerea. Plant Dis 83, 569–575.CrossRefGoogle Scholar
  30. Zhao H, Kim YK, Huang L & Xiao CL, 2010. Resistance to thiabendazole and baseline sensitivity to fludioxonil and pyrimethanil in Botrytis cinerea populations from apple and pear in Washington State. Postharv Biol Technol 56, 12–18.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2011

Authors and Affiliations

  1. 1.Esteburg Fruit Research and Advisory CentreJorkGermany
  2. 2.Department of BiologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations