Advertisement

Journal of Plant Diseases and Protection

, Volume 116, Issue 6, pp 263–270 | Cite as

Effects of sulfated polysaccharide and alcoholic extracts from green seaweed Ulva fasciata on anthracnose severity and growth of common bean (Phaseolus vulgaris L.)

  • R. Paulert
  • V. Talamini
  • J. E. F. Cassolato
  • M. E. R. Duarte
  • M. D. Noseda
  • A. SmaniaJr
  • M. J. StadnikEmail author
Article

Abstract

Seaweed compounds can play important roles in either plant growth promoting or plant-pathogen interactions. The aim of this study was to evaluate the potential of crude extracts and sulfated polysaccharides isolated from the green macroalga Ulva fasciata in the control of bean anthracnose caused by Colletotrichum lindemuthianum as well the influence in the plant growth. Sulfated polysaccharides, called ulvan, were extracted with hot water, precipitated in ethanol and identified by chemical and spectroscopic methods (13C NMR). The contents of sulfate, uronic acid, protein and monosaccharides were determined. In order to obtain the crude extracts, the dried alga was extracted with methanol in Soxhlet apparatus or with ethanol at room temperature. The effect of ulvan (0.1; 1; and 10 mg ml−1) and crude extracts were tested in vitro on conidial germination and mycelial growth of C. lindemuthianum and also on the seed germination and seedling length of bean. Under greenhouse conditions, bean plants (Phaseolus vulgaris L.) were sprayed twice with ulvan or extracts and inoculated two days after the second application. The anthracnose severity was evaluated 7 days and aerial plant dry weight 14 days after inoculation. The soluble methanolic extract inhibited the mycelial growth of C. lindemuthianum in vitro, but did not reduce the disease severity under greenhouse conditions. Foliar spray of methanolic extracts enhanced the dry weight of bean plants by 20%. In contrast, ulvan increased in vitro the mycelium growth and the conidia germination of the fungus, but in greenhouse, the spray of 10 mg ml−1 ulvan reduced the anthracnose severity by 38% without affecting plant growth. The results indicate that ulvan is probably able to induce resistance to bean anthracnose.

Keywords

Colletotrichum lindemuthianum green algae induced resistance Ulva sp. ulvan 

Stichwörter

Colletotrichum lindemuthianum Grünalgen induzierte Resistenz Ulva sp. Ulvan 

Die Wirkung von sulfonierten Polysacchariden und alkoholischen Extrakten aus der Grünalge Ulva fasciata auf den Anthracnosebefall und das Wachstum von Buschbonenpflanzen (Phaseolus vulgaris L.)

Zusammenfassung

Verbindungen aus Algen können eine wichtige Rolle bei der Förderung des Pflanzenwachstums und bei Pflanze-Pathogen Interaktionen spielen. Ziel dieser Arbeit war es daher, das Potenzial von Rohextrakten und sulfonierten Polysacchariden aus der grünen Macroalge Ulva fasciata für die Bekämpfung der durch Colletotrichum lindemuthianum verursachten Brennfleckenkrankheit an Buschbohne (Phaseolus vulgaris L.) und für die Stimulation des Wachstums dieser Pflanze auszuwerten. Die sulfonierten Polysaccharide, nämlich Ulvane, wurden mit warmem Wasser extrahiert, mit Ethanol gefällt und mit Hilfe von spektroskopischen Methoden (13C-NMR) identifiziert. Der Gehalt an Sulfat, Uronsäure, Proteinen und Monosacchariden wurde bestimmt. Um die Rohextrakte zu gewinnen, wurden die getrockneten Algen mit Methanol im Soxhlet-Gerät oder mit Ethanol bei Raumtemperatur extra-hiert. Die in-vitro-Wirkung von Ulvan (0,1, 1 und 10 mg ml−1) und der Rohextrakte, sowohl auf die Konidienkeimung und das Myzelwachstum von C. lindemuthianum als auch auf die Keimungsfähigkeit und die Länge der Sämlingen von Bohnen, wurde ermittelt. Unter Gewächshausbedingungen wurden die Bohnenpflanzen zweimal mit Ulvan oder Rohextrakten besprüht und zwei Tage danach inokuliert. Der Krankheitsbefall und die pflanzliche Trockenmasse wurden 7 bzw. 14 Tagen nach der Inokulation ausgewertet. Der methanolische Extrakt reduzierte das pilzliche Myzelwachstum zwar in vitro, die Blattapplikation der methanolischen Extrakte wies aber keinen Effekt auf den Krankheitbefall im Gewächhaus auf. Die Trockenmasse der Bohnenpflanzen wurde um 20% erhöht. Im Gegensatz dazu verbesserte Ulvan das Myzelwachstum und die Konidienkeimung des Pilzes in vitro, während seine Blattapplikation im Gewäschshaus bei einer Konzentration von 10 mg ml−1 den Krankheitsbefall um 38% reduzierte, ohne Auswirkungen auf das Pflanzenwachstum zu haben. Diese Ergebnisse deuten darauf hin, dass Ulvan möglicherweise die Resistenz von Buschbohnenpflanzen gegen die Brennfleckenkrankheit induziert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abourriche, A., M. Charrouf, M. Berrada, A. Bennamara, N. Chaib, C. Francisco, 1999: Antimicrobial activities and cytotoxicity of the brown alga Cystoseira tamariscifolia. Fitoterapia 70, 611–614.CrossRefGoogle Scholar
  2. Aziz, A., B. Poinssot, X. Daire, M. Adrian, A. Bézier, B. Lambert, J.-M. Joubert, A. Pugin, 2003: Laminarin elicits defense responses in grapevine and induces protection against Botrytis cinerea and Plasmopara viticola. Mol. Plant-Microbe Interact. 16, 1118–1128.CrossRefPubMedGoogle Scholar
  3. Bhosale, S.H., T.G. Jagtap, C.G. Naik, 1999: Antifungal activity of some marine organisms from India against food spoilage Aspergillus strains. Mycopathologia 147, 33–138.CrossRefGoogle Scholar
  4. Bigirimana, J., M. Höfte, 2002: Induction of systemic resistance to Colletotrichum lindemuthianum in bean by a benzothiadiazole derivative and rhizobacteria. Phytoparasitica 30, 1–10.CrossRefGoogle Scholar
  5. Boyle, C., D. Walters, 2005: Induction of systemic protection against rust infection in broad bean by saccharin: effects on plant growth and development. New Phytol. 167, 607–612.CrossRefPubMedGoogle Scholar
  6. Cassolato, J.E.F., M.D. Noseda, C.A. Pujol, F.M. Pellizzari, B. Damonte, M.E.R. Duarte, 2008: Chemical structure and antiviral activity of the sulfated heterorhamnan isolated from the green seaweed Gayralia oxysperma. Carbohyd. Res. 343, 3085–3095.CrossRefGoogle Scholar
  7. Chandía, N.P., B. Matsuhiro, 2008: Characterization of a fucoidan from Lessonia vadosa (Phaeophyta) and its anticoagulant and elicitor properties. Int. J. Biol. Macromol. 42, 235–240.CrossRefPubMedGoogle Scholar
  8. Cluzet, S., C. Torregrossa, C. Jacquet, C. Lafitte, J. Fournier, L. Mercier, S. Salamagne, X. Briand, M.-T. Esquerré-Tugayé, B. Dumas, 2004: Gene expression profiling and protection of Medicago truncatula against a fungal infection in response to an elicitor from green algae Ulva spp. Plant Cell Environ. 27, 917–928.CrossRefGoogle Scholar
  9. Delattre, C., P. Michaud, B. Courtois, J. Courtois, 2005: Oligosaccharides engineering from plants and algae applications in biotechnology and therapeutics. Minerva Biotechnol. 17, 107–117.Google Scholar
  10. Dodgson, K.S., R.G. Price, 1962: A note on the determination of the ester sulfate content of sulphated polysaccharides. Biochem. J 84, 106–110.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dubois, M.K., K.A. Gilles, J.K. Hamilton, P.A. Rebers, F. Smith, 1956: Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.CrossRefGoogle Scholar
  12. Filisetti-Cozzi, T.M.C.C., N.C. Carpita, 1991: Measurement of uronic acids without interference from neutral sugars. Anal. Biochem. 197, 157–162.CrossRefPubMedGoogle Scholar
  13. González del Val, A., G. Platas, A. Basilio, A. Cabello, J. Gorrochategui, I. Suay, F. Vicente, E. Portillo, M. Jiménez del Rio, G.G. Reina, F. Peláez, 2001: Screening of antimicrobial activities in red, green and brown macroalgae fron Gran Canaria (Canary Islands, Spain). Int. Microbiol. 4, 35–40.PubMedGoogle Scholar
  14. Heil, M., 2001: The ecological concept of costs of induced systemic resistance (ISR). Eur. J. Plant Pathol. 107, 137–146.CrossRefGoogle Scholar
  15. Hugouvieux, V., S. Centis, C. Lafitte, M.-T. Esquerre-Tugaye, 1997: Induction by a-L-arabinose and a-L-rhamnose of endopolygalacturonase gene expression in Colletotrichum lindemuthianum. Appl. Environ. Microbiol. 63, 2287–2292.PubMedPubMedCentralGoogle Scholar
  16. Immanuel, G., V.C. Vincybai, A. Sivaram, A. Palavesam, M.P. Marian, 2004: Effect of butanolic extracts from terrestrial herbs and seaweeds on the survival, growth and pathogen (VIBRIO PARAHAEMOLYTICUS) load on shrimp Penaeus indicus juveniles. Aquaculture 236, 53–65.CrossRefGoogle Scholar
  17. Klarzynski, O., B. Plesse, J.-M. Joubert, J.-C. Yvin, M. Kopp, B. Kloareg, B. Fritig, 2000: Linear ß-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124, 1027–1037.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Klarzynski, O., V. Descamps, B. Plesse, J.-C. Yvin, B. Kloareg, B. Fritig, 2003: Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol. Plant-Microbe interact. 16, 115–122.CrossRefPubMedGoogle Scholar
  19. Lahaye, M., M.A.V. Axelos, 1993: Gelling properties of water-soluble polysaccharides from proliferating marine green seaweed (ULVA spp.). Carbohyd. Polym. 22, 261–265.Google Scholar
  20. Lahaye, M., B. Ray, 1996: Cell-wall polysaccharides from the marine green alga Ulva ”rigida“ (Ulvales, Chlorophyta) - NMR analysis of ulvan oligosaccharides. Carbohyd. Res. 283, 161–173.CrossRefGoogle Scholar
  21. Lahaye, M., M. Brunel, E. Bonnin, 1997: Fine chemical structure analysis of oligosaccharides produced by an ulvan-lyase degradation of the water-soluble cell-wall polysaccharides from Ulva sp. (Ulvales, Chlorophyta). Carbohyd. Res. 304, 325–333.CrossRefGoogle Scholar
  22. Lahaye, M., 1998: NMR spectroscopic characterisation of oligosaccharides from two Ulva rigida ulvan samples (Ulvales, Chlorophyta) degraded by a lyase. Carbohyd. Res. 314, 1–12.CrossRefGoogle Scholar
  23. Lahaye, M., F. Inizan, J. Vigouroux, 1998: NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohyd. Polym. 36, 239–249.CrossRefGoogle Scholar
  24. Lahaye, M., E.A.-C. Cimadevilla, R. Kuhlenkamp, B. Quemener, V. Lognoné, P. Dion, 1999: Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). J Appl. Phycol. 11, 1–7.CrossRefGoogle Scholar
  25. Lahaye, M., A. Robic, 2007: Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules 8, 1765–1774.CrossRefPubMedGoogle Scholar
  26. Lowry, O.H., N.J. Rosebrough, A.L. Farr, K.L. Randall, 1951: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  27. Mercier, L., C. Lafitte, G. Borderies, X. Briand, M.-T. Esquerré-Tugayé, J. Fournier, 2001: The algal polysaccharide carrageenans can act as an elicitor of plant defence. New Phytol. 149, 43–51.CrossRefGoogle Scholar
  28. Meziane, H., I. Van der Sluis, L.C. Van Loon, M. Höfte, P.A.M. Bakker, 2005: Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol. Plant Pathol. 6, 177–185.CrossRefPubMedGoogle Scholar
  29. Msuya, F.E., A. Neori, 2002: ULVA RETICULATA and Gracilaria crassa: macroalgae that can biofilter effluent from tidal fishponds in Tanzania. Western Indian Ocean J. Mar. Sci. 1, 117–126.Google Scholar
  30. Mulbry, W., K. Westhead, C. Pizarro, L. Sikora, 2005: Recycling of manure nutrients: use of algal biomass from dairy manure treatment as a slow release fertilizer. Bioresource Technol. 96, 451–458.CrossRefGoogle Scholar
  31. Nagasawa, K., Y. Inoue, T. Tokuyasu, 1979: An improved method for the preparation of chondroitin by solvotytic desulfation of chondroitin sulfates. J. Biochem. 86, 1323–1329.PubMedGoogle Scholar
  32. Paulert, R., A. Smania Jr., M.J. Stadnik, M.G. Pizzolatti, 2007: Antifungal and antibacterial properties of the ulvan and crude extracts from the green seaweed Ulva fasciata Delile. Algol. Stud. 123, 123–129.CrossRefGoogle Scholar
  33. Pengzhan, Y., Z. Quanbin, L. Ning, X. Zuhong, W. Yanmei, L. Zhi'en, 2003: Polysaccharides from Ulva pertusa (Chlorophyta) and preliminary studies on their antihyperlipidemia activity. J. Appl. Phycol. 15, 21–27.CrossRefGoogle Scholar
  34. Qi, H., T. Zhao, Q. Zhang, Z. Li, Z. Zhao, R. Xing, 2005: Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J. Appl. Phycol. 17, 527–534.CrossRefGoogle Scholar
  35. Qi, H., Q. Zhang, T. Zhao, R. Hu, K. Zhang, Z. Li, 2006: IN VITRO antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorg. Med. Chem. Lett. 16, 2441–2445.CrossRefPubMedGoogle Scholar
  36. Quemener, B., M. Lahaye, C. Bobin-Dubigeon, 1997: Sugar determination in ulvans by a chemicals-enzymatic method coupled to high performance anion exchange chromatography. J. Appl. Phycol. 9, 179–188.CrossRefGoogle Scholar
  37. Ray, B., M. Lahaye, 1995: Cell-wall polysaccharides from the marine green alga Ulva rigida (Ulvales, Chlorophyta). Extraction and chemical composition. Carbohyd. Res. 274, 251–261.CrossRefGoogle Scholar
  38. Robic, A., D. Bertrand, J.-F. Sassi, Y. Lerat, M. Lahaye, 2009: Determination of the chemical composition of ulvan, a cell wall polysaccharide from Ulva spp. (Ulvales, Chlorophyta) by FT-IR and chemometrics. J. Appl. Phycol. 21, 451–456.CrossRefGoogle Scholar
  39. Sathivel, A., H.R.B. Raghavendran, P. Srinivasan, T. Devaki, 2008: Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on d-Galactosamine induced hepatitis in rats. Food Chem. Toxicol. 46, 3262–3267.CrossRefPubMedGoogle Scholar
  40. Stirk, W.A., G.D. Arthur, A.F. Lourens, O. Novák, M. Strnad, J. van Staden, 2004: Changes in cytokinin and auxin concentrations in seaweed concentrates when stored at an elevated temperature. J. Appl. Phycol. 16, 31–39.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2009

Authors and Affiliations

  • R. Paulert
    • 1
  • V. Talamini
    • 2
  • J. E. F. Cassolato
    • 3
  • M. E. R. Duarte
    • 3
  • M. D. Noseda
    • 3
  • A. SmaniaJr
    • 1
  • M. J. Stadnik
    • 2
    Email author
  1. 1.Departamento de Microbiologia e ParasitologiaUniversidade Federal de Santa CatarinaFlorianopolisBrazil
  2. 2.Departamento de FitotecniaUniversidade Federal de Santa CatarinaFlorianopolisBrazil
  3. 3.Departamento de Bioqufmica e Biologia MolecularUniversidade Federal do ParanaCuritibaBrazil

Personalised recommendations