Journal of Plant Diseases and Protection

, Volume 116, Issue 2, pp 49–54 | Cite as

Effect of fucoidan from the brown alga Fucus evanescens on the development of infection induced by potato virus X in Datura stramonium L. leaves

  • A. Reunov
  • L. Lapshina
  • V. Nagorskaya
  • T. Zvyagintseva
  • N. Shevchenko


We studied the influence of fucoidan from the brown alga Fucus evanescens on the development of infection induced by potato virus X (PVX) in Datura stramonium leaves. It is shown that 24 h after treatment of the leaves with fucoidan and following inoculation with PVX, the infectivity and amount of the virus in the leaves as well as the accumulation of viral particles in infected cells during early infection period were substantially less than those in the untreated control. Using ultrastructure-morphometric analysis, we established that the fucoidan treatment causes an increase in the protein-synthesizing capability of cells (nucleolus dimension and amount of both mitochondria and rough endoplasmic reticulum membranes increased). At the same time, the fucoidan treatment caused some stimulation of intracellular lytic processes that lead to destruction of virus particles and, therefore, may be considered as one of fucoidan-conditioned protective mechanisms limiting the virus accumulation in cells. Stimulation by fucoidan of the formation of PVX-specific laminated structures that may bind virus particles is another antiviral cell mechanism that limits reproduction and transportation of the virus.

Key words

antiviral activity Datura stramonium fucoidan Fucus evanescens potato virus X 

Effekt von Fukoidan aus der Braunalge Fucus evanescens auf den Infektionsverlauf von Kartoffelvirus X in Blättern von Datura stramonium L.


Die Wirkung von Fukoidan aus der Braunalge Fucus evanescens auf den Infektionsverlauf von Kartoffelvirus X (PVX) in Blättern von Datura stramonium L. wurde untersucht. Während der frühen Infektionsphase, 24 Stunden nach der Behandlung der Blätter mit Fukoidan und der folgenden Inokulation mit PVX, waren das Infektionsvermögen, der Virusgehalt in den Blättern und die Zahl der Viruspartikel in den infizierten Mesophylzellen wesentlich geringer als in den Blättern der unbehandelten Kontrolle. Durch ultrastrukturell- morphometrische Analysen wurde festgestellt, dass die Behandlung mit Fukoidan die Fähigkeit der Zellen steigert, Proteine zu synthesieren (der Nukleolus und die Zahl der Mitochondrien und Membranen des rauhen endoplasmatischen Retikulums vergrößern sich). Zugleich stimuliert die Behandlung mit Fukoidan intrazelluläre lytischen Prozesse, die Viruspartikel abbauen, weshalb diese Prozesse als durch Fukoidan ausgelöste Abwehrmachanismen betrachtet werden können, die die Akkumulation der Viren beschränken. Die Bildung von PVX-spezifischen laminaren Strukturen durch Fukoidan, die möglicherweise die Viruspartikel binden können, ist ein weiterer vom Präparat induzierter antiviraler Zellschutzmechanismus, der die Reproduktion und Ausbreitung von PVX inhibiert.


antivirale Aktivität Datura stramonium Fukoidan Fucus evanescens Kartoffelvirus X 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alves, A.P., B. Mulloy, G.W. Moy, V.D. Vacquier, P.A.S. Mourao, 1998: Females of the sea urchin Strongylocentrotus purpuratus differ in the structure of their egg jelly sulphated fucans. Glycobiology 8, 939–946.Google Scholar
  2. Baba, M., R. Snoeck, R. Pauwels, E. De Clercq, 1988: Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob. Agents Chemother. 32, 1742–1745.Google Scholar
  3. Belitser, N.V., 1978: Lysosomal system and microbodies in plant and animal cells. Doctorate thesis, Leningrad (in Russian).Google Scholar
  4. Berteau, O., B. Mulloy, 2003: Sulfated fucans, fresh perspectives: structures, functions, and biological properties of sulfated fucans and overview of enzymes active toward this class of polysaccharide. Glycobiology 13, 29–40.Google Scholar
  5. Elyakova, L.A., V.V. Isakova, L.A. Lapshina, V.P. Nagorskaya, G.N. Lichatskaya, T.N. Zvyagintseva, A.V. Reunov, 2007: Enzyme transformation of biologically active 1,3;1,6-ß-D-glucan. Structure and activity of resulting fragments. Biochemistry (Moscow) 72, 29–36.Google Scholar
  6. Fuller, G.M., D. Shields, 1998: Molecular Basis of Medical Cell Biology. Appleton and Lange, 6Stamford, CT, USA.Google Scholar
  7. Gechev, T.S., J. Hille, 2005: Hydrogen peroxide as a signal controlling plant programmed cell death. J. Cell Biol. 168, 17–20.Google Scholar
  8. Jacobsen, M.D., 1996: Reactive oxygen species and programmed cell death. Trends Biochem. Sci. 21, 83–86.Google Scholar
  9. Kopp, M., J. Rouster, B. Fritig, A. Darvill, P. Albersheim, 1989: Host-pathogen interactions. XXXII. A fungal glucan preparation protects Nicotiana against infection by viruses. Plant Physiol. 90, 208–216.Google Scholar
  10. Lapshina, L.A., A.V. Reunov], 1997: On the intracellular inclusions induced by potato virus X. Dokl. Biol. Sci. 355, 716–718 (in RussiGoogle Scholar
  11. Lapshina, L.A., A.V. Reunov, V.P. Nagorskaya, T.N. Zvyagintseva, N.M. Shevchenko, 2006: Inhibitory effect of fucoidan from alga Fucus evanescens on the spread of infection induced by tobacco mosaic virus in tobacco leaves of two cultivars. Russ. J. Plant Physiol. 53, 246–251.Google Scholar
  12. Lapshina, L.A., A.V. Reunov, V.P. Nagorskaya, T.N. Zvyagintseva, N.M. Shevchenko], 2007: Effect of fucoidan from Fucus evanescens on a formation of TMV-specific inclusions in the cells of tobacco leaves. Russ. J. Plant Physiol. 54, 111–Google Scholar
  13. Lyon, G.D., T. Reglinski, A.C. Newton, 1995: Novel disease control compounds: the potential to “immunize” plants against infection. Plant Pathol. 44, 407–427.Google Scholar
  14. Matile, P., 1975: The Lytic Compartment of Plant Cells. Springer-Verlag, Wien, New York.Google Scholar
  15. Matthews, R.E.F., 1981: Plant Virology. Second edition. Academic Press, New York, London, Toronto, Sydney, San Francisco.Google Scholar
  16. Otsuki, Y., I. Takebe, Y. Honda, S. Kajita, C. Matsui, 1974: Infection of tobacco mesophyll protoplasts by potato virus X. J. Gen. Virol. 22, 375–385.Google Scholar
  17. Pospieszny, H., S. Chirkov, J. Atabekov, 1991: Induction of antiviral resistance in plant by chitosan. Plant Sci. 79, 63–68.Google Scholar
  18. REIFMAN, V.G., S.A. KOLESNIKOVA, 1973: Vaccination as a means of preventing damage from potato virus diseases. I. Isolation of weak and severe X-strains from natural populations. In: Virus Diseases of Plants in the Far East. Proceedings of the Institute of Biology and Pedology 14 (117), pp. 92–98. Vladivostok (in Russian).Google Scholar
  19. REUNOV, A.V., 1999: Virus Pathogenesis and Protective Mechanisms of Plants. Dalnauka, Vladivostok (in Russian).Google Scholar
  20. Reunov, A.V., L.A. Lapshina, V.P. Nagorskaya, L.A. Elyakova, 1996: Effect of 1,3;1,6-ß-D-glucan on infection of detached tobacco leaves with tobacco mosaic virus. J. Phytopathol. 144, 247–249.Google Scholar
  21. Reunov, A.V., L.A. Lapshina, V.P. Nagorskaya, L.A. Elyakova, 2000: The inhibitory effect of 1,3;1,6-ß-D-glucan on potato virus X infection of Gomphrena and Datura leaves. Russ. J. Plant Physiol. 47, 211–214.Google Scholar
  22. Reunov, A.V., V.P. Nagorskaya, L.A. Lapshina, I. Yermak, A. Barabanova, 2004: Effect of k/ß-carrageenan from red alga Tichocarpus crinitus (Tichocarpaceae) on infection of detached tobacco leaves with tobacco mosaic virus. J. Plant Dis. Protect. 111, 165–172.Google Scholar
  23. Rinne, P.L.H., P.M. Kaikuranta, C. Van Der Schoot, 2001: The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. Plant J. 26, 249–Google Scholar
  24. Rouhier, P., M. Kopp, V. Begot, M. Bruneteau, B. Fritig, 1995: Structural features of fungal ß-D-glucans for the efficient inhibition of the initiation of virus infection on Nicotiana tabacum. Phytochemistry 39, 57Google Scholar
  25. Shalla, T.A., J.F. Shepard, 1972: The structure and antigenic analysis of amorphous inclusion bodies induced by potato virus X. Virology 49, 654–667.Google Scholar
  26. Slováková, L., P. Capek, 2000: Defence responses against TNV infection induced by galactoglucomannan-derived oligosaccharides in cucumber cells. Eur. J. Plant Pathol. 106, 543–553.Google Scholar
  27. Stols, A., G.W. Hill-Van Der Meulen, M.K.I. Toen, 1970: Electron microscopy of Nicotiana glutinosa leaf cells infected with potato virus X. Virology 40, 168–170.Google Scholar
  28. Stübler, D., H. Buchenauer, 1996a: Antiviral activity of the glucan lichenan (poly-gB»3, 1»4D-anhydroglucose) 1. Biological activity in tobacco plants. J. Phytopathol. 144, 37–43.Google Scholar
  29. Stübler, D., H. Buchenauer, 1996b: Antiviral activity of the glucan lichenan (poly-β1»3, 1»4D-anhydroglucose) 2. Studies on the mode of action. J. Phytopathol. 144, 45–52.Google Scholar
  30. Šubíková, V., L. Slováková, ia]V. Farkaš, 1994: Inhibition of tobacco necrosis virus infection by xyloglucan fragments. Z. Pflanzenk. Pflanzen. 101, 128–131.Google Scholar
  31. Weibel, E.R., 1969: Stereological principles for morphometry in electron microscopic cytology. Int. Rev. Cytol. 26, 235–302.Google Scholar
  32. Zvyagintseva, T.N., N.M. Shevchenko, A.O. Chizhov, T.N. Krupnova, E.V. Sundukova, V.V. Isakov, 2003: Water-soluble polysaccharides of some far-eastern brown seaweeds. Distribution, structure, and their dependence on the developmental conditions. J. Exp. Marine Biol. Ecol. 294, 1–13.Google Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2009

Authors and Affiliations

  • A. Reunov
    • 1
  • L. Lapshina
    • 1
  • V. Nagorskaya
    • 1
  • T. Zvyagintseva
    • 1
  • N. Shevchenko
    • 1
  1. 1.Pacific Institute of Bioorganic ChemistryFar East Branch of Russian Academy of SciencesVladivostokRussia

Personalised recommendations