Advertisement

Journal of Plant Diseases and Protection

, Volume 114, Issue 2, pp 82–87 | Cite as

Quantitative analysis of the seasonal and tissue-specific expression of Cry1Ab in transgenic maize Mon810

  • H. T. Nguyen
  • J. A. JehleEmail author
Article

Abstract

The tissue-specific expression and seasonal abundance of Cry1Ab protein were determined in transgenic maize plants (Mon810, variety ‘Novelis’) from two field trials located near Bonn and Halle, Germany. A total of 1085 samples were analysed by using Double Antiserum-Enzyme Linked Immun-osorbent Assay (DAS-ELISA). The Cry1Ab contents of various plant tissues (root, stem, upper leaf, lower leaf, anther, pollen and kernel) were determined at four different growth stages (BBCH19, BBCH30, BBCH61 and BBCH83) collected in 2001, 2002 and 2003. Mon810 showed the highest Cry1Ab contents in the leaves (5.5–6.4 µg g–1 fresh weight [fw]) at BBCH83, whereas the lowest Cry1Ab contents were detected in the pollen (1–97 ng g–1 fw). Cry1Ab content of residual root stocks collected in the field nine months after harvest was 15–17 n g g–1 fw. This demonstrated that the Cry1Ab concentration in residual root stocks was reduced to about one-hundredth of the fresh roots. The monitoring of Cry1Ab expression showed that the Cry1Ab contents varied strongly between different plant individuals.

Key words

Cry1Ab expression ELISA European corn borer Mon810 transgenic maize 

Quantitative Analyse der saisonalen und gewebespezifischen Expression von Cry1Ab in transgenen Mon810-Mais

Zusammenfassung

p ]Die gewebespezifische Expression und die saisonale Verbreitung des Cry1Ab-Proteins in transgenen Maispflanzen (Mon810, Sorte „Novelis“) wurde in zwei Feldversuchen bei Bonn und Halle untersucht. Insgesamt wurden 1085 Proben mit Hilfe des Double Antiserum-Enzyme Linked Immunosor-bent Assay (DAS-ELISA) untersucht. Der Cry1Ab-Gehalt verschiedener Pflanzengewebe (Wurzel, Stängel, oberes Blatt, unteres Blatt, Staubbeutel, Pollen und Korn) wurde in vier verschiedenen Entwicklungsstadien (BBCH19, BBCH30, BBCH61 and BBCH83) in den Jahren 2001, 2002 und 2003 bestimmt. Die Blätter von Mon810 zeigten den höchsten Cry1Ab-Gehalt (5.5–6.4 µg g–1 Frischgewicht [FG] bei BBCH83), während die Pollen mit 1–97 ng g–1 FG den geringsten Gehalt aufwiesen. Der Cry1Ab-Gehalt auf dem Feld verbliebener Wurzeln betrug neun Monate nach der Ernte 15–17 ng g–1 FG, also nur etwa ein Hundertstel des Gehalts frischer Maiswurzeln. Die Expression des Cry1Ab-Prote-ins variierte gravierend zwischen einzelnen Maispflanzen.

Stichwörter

Cry1Ab-Expression ELISA Maiszünsler Mon810 transgener Mais 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. AGBIOS, 2001: http://www.agbios.com
  2. Alstad, D.N., D.A. Andow, 1995: Managing the evolution of insect resistance to transgenic to transgenic plants. Science 268, 1394–1396.CrossRefGoogle Scholar
  3. Baumgarte, S., C.C. Tebbe, 2005: Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (Mon810) and its effect on bacterial communities in the maize rhizosphere. Mol. Ecol. 14, 2539–2551.CrossRefPubMedGoogle Scholar
  4. Clark, B.W., T.A. Phillips, J.R. Coats, 2005: Environmental fate and effects of Bacillus thuringiensis (Bt) proteins from trans-genic crops: a review. J. Agric. Food Chem. 53, 4643–4653.CrossRefPubMedGoogle Scholar
  5. Dutton, A., J. Romeis, F. Bigler, 2003: Assessing the risks of insect resistant transgenic plants on entomophagous arthropods: Bt-maize expressing Cry1Ab as a case study. Biocontrol 48, 611–636.CrossRefGoogle Scholar
  6. EPA, 1999: Biopesticide fact sheet: Bacillus thuringiensis Cry1A(b) delta-endotoxin and the genetic material necessary for its production in corn. Office of Pesticide Programs, US Environmental Protection Agency. (http://www.epa.gov/pesticides/facsheets/fs006430t.htm).Google Scholar
  7. EPA BRAD, 2001: Biopesticides registration action document: Revised risks and benefits sections- Bacillus thuringiensis plant-pesticides. July 16. 2001, EPA. p. IIA5; IIC17.Google Scholar
  8. Essential Biosafety, 2001: http://www.essentialbiosafety.info
  9. Gould, F., 1998: Sustainability of transgenic insecticidal culti-vars: Integrating pest genetics and ecology. Annu. Rev. Entomol. 43, 701–726.CrossRefPubMedGoogle Scholar
  10. Greenplate, J.T., 1999: Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminals. J. Econ. Entomol. 92, 1377–1383.CrossRefGoogle Scholar
  11. Hellmich, R.L., B.D. Siegfried, M.K. Sears, D.E. Stanley-Horn, M.J. Daniels, H.R. Mattila, T. Spencer, K.G. Bidne, L.C. Lewis, 2001: Monarch larvae sensitivity to Bacillus thuringiensis purified proteins and pollen. Proc. Natl. Acad. Sci. USA 98, 11925–11930.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kaiser, H., 1965: Zum Problem der Nachweisgrenze. Fresenius Z. Anal. Chem. 209, 1–18.CrossRefGoogle Scholar
  13. Koziel, M.G., G.L. Beland, C. Bowman, N.B. Carozzi, R. Crenshaw, L. Crossland, J. Dawson, N. Desal, M. Hill, S. Kadwell, K. Launis, K. Lewis, D. Maddox, K. McPheson, M.R. Meghji, E. Merlin, R. Rhodes, G.W. Warren, M. Wringt, S.T. Evola, 1993: Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Biotechnology 11, 194–200.CrossRefGoogle Scholar
  14. Krattiger, A.F., 1996: Insect Resistance in crops: A case study of Bacillus thuringiensis (Bt) and its transfer to developing countries. ISAAA Briefs No. 2, pp. 3–4. ISAAA, Ithaca, NY, USA.Google Scholar
  15. Meier, U., 2001: Growth stages of mono- and dicotyledonous plants. Second edition. Federal Biological Research Centre for Agriculture and Forestry, Braunschweig, Germany.Google Scholar
  16. Mendelsohn, M., J. Kough, Z. Vaituzis, K. Matthews, 2003: Are Bt crops safe? Nature Biotechnol. 21, 1003–1009.CrossRefGoogle Scholar
  17. Pagel-Wieder, S., F. Gessler, J. Niemeyer, D. Schröder, 2004: Absorbtion of Bacillus thuringiensis (Cry1Ab) on Na-mont-morillonite and on the clay fractions of different soils. J. Plant Nutri. Soil Sci. 167, 184–188.CrossRefGoogle Scholar
  18. Perlak, F.J., R.L. Fuchs, D.A. Dean, S.L. McPheson, D.A. Fischhoff, 1991: Modification of the coding sequence enhances plant expression of insect control protein genes. Proc. Natl. Acad. Sci. USA 88, 3324–3328.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Piepho, H.P., A. Büchse, K. Emrich, 2003: Reiseführer der gemischten Modelle für randomisierte Experimente. J. Agron. Crop Sci. 189, 310–322.CrossRefGoogle Scholar
  20. Romeis, J., A. Dutton, F. Bigler, 2004: Bacillus thuringiensis toxin (Cry1Ab) has no direct effect on larvae of the green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). J. Insect Physiol. 50, 175–183.CrossRefPubMedGoogle Scholar
  21. Shelton, A.M., J.-Z. Zhao, R.T. Roush, 2002: Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47, 845–881.CrossRefPubMedGoogle Scholar
  22. Spilke, J., A. Tuchscherer, 2001: Simulationsuntersuchungen zum Einfluss verschiedener Strategien der Varianzkomponentenschätzung und Hypothesenprüfung auf die statistischen Risiken in gemischten linearen Modellen mit ungleicher Klassenbesetzung. Z. Agrarinf. 10, 66–75.Google Scholar
  23. Spilke, J., H.P. Piepho, X. Hu, 2002: Auswertung unbalancierter Feldversuche bei Nutzung von SAS PROC MIXED. Mitt.Ges. Pflanzenbauwiss. 14, 66–67.Google Scholar
  24. Tapp, H., G. Stotzky, 1998: Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol. Biochem. 30, 471–476.CrossRefGoogle Scholar
  25. Transgen, 2005: Weltweiter Anbau von gv-Pflanzen 2005: (http://www.transgen.de/gentechnik/pflanzenanbau/531.doku.html).Google Scholar
  26. Whiteley, H.R., H.E. Schnepf, 1986: The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu. Rev. Microbiol. 40, 549–576.CrossRefPubMedGoogle Scholar
  27. Zwahlen, C., A. Hilbeck, R. Howald, W. Nentwig, 2003: Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Mol. Ecol. 12, 1077–1086.CrossRefPubMedGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2007

Authors and Affiliations

  1. 1.Abt. Phytomedizin, Labor für Biotechnologischen PflanzenschutzDLR RheinpfalzNeustadt an der WeinstrasseGermany

Personalised recommendations