Advertisement

Journal of Plant Diseases and Protection

, Volume 113, Issue 6, pp 241–246 | Cite as

Quantifying the effects of previous crop, tillage, cultivar and triazole fungicides on the deoxynivalenol content of wheat grain — a review

  • M. Beyer
  • M. B. Klix
  • H. Klink
  • J.-A. Verreet
Article

Abstract

Deoxynivalenol (DON) is a mycotoxin produced by fungi of the genus Fusarium. Maximum tolerable DON concentrations for grain and selected wheat products were laid down by national and European legislative institutions to protect consumers from health risks associated with the intake of this mycotoxin. Among the factors that can be controlled by growers, previous crop, tillage, wheat cultivar and fungicide regimes were identified as the most important variables for DON contamination of wheat. Beyond the identification of the risk factors, their quantitative impact needs to be known for integrated control strategies. The purpose of this review was to extract information on the magnitude of DON reductions caused by agronomic methods or fungicide applications from recent publications. Efficacies of fungicides containing triazoles as active ingredient differed significantly (P= 0.004) in the studies published recently. This effect was solely based on a poor performance of fenbuconazole. No significant differences between triazole fungicide efficacies were observed after excluding fenbuconazole from the analysis. On average, triazole fungicides applied around the time of wheat anthesis reduced the DON content to 53 ± 4% of the grain obtained from untreated control plots. Planting wheat after crops other than maize reduced the DON content to 33 ± 11% compared to maize as the pre-crop. Using a mouldboard plough lowered the DON content to 33 ± 7% compared to minimal or no tillage plots. Cultivating commercially available moderately susceptible cultivars decreased the DON content down to 24 ± 7% compared to susceptible cultivars. Hence, careful choice of cultivar is currently the most effective agronomic method to decrease DON contamination levels in wheat followed by ploughing, avoiding maize as pre-crop and applying triazole fungicides at wheat anthesis. If DON contents of reference scenarios (for instance long term average DON contamination levels for particular cultural practices and regions) are known, the factors extracted in this review may be useful to estimate how many risk factors need to be avoided to decrease DON contents below the limits given in the actual legal regulations.

Key words

Fusarium culmorum Fusarium graminearum Fusarium head blight integrated disease control mycotoxin trichothecene 

Quantifizierung des Einflusses von Vorfrucht, Bodenbearbeitung, Sorte und Triazolfungiziden auf den Deoxynivalenolgehalt von Weizen — ein Review

Zusammenfassung

Deoxynivalenol (DON) ist ein von Pilzen der Gattung Fusarium gebildetes Mykotoxin. Gesetzgebende nationale und europäische Institutionen haben maximal zulässige Höchstmengen für DON in Getreide und ausgewählten Weizenprodukten festgelegt, um Verbraucher vor den gesundheitlichen Risiken, die mit der Aufnahme von Mykotoxinen verbunden sind, zu schützen. Unter den Faktoren, die von Getreideproduzenten beeinflusst werden können, wurden die Vorfrucht, die Art der Bodenbearbeitung, die Weizensorte und Fungizidanwendungen als die wichtigsten Einflussfaktoren für die Belastung von Weizen mit DON identifiziert. über die rein qualitative Identifikation der Risikofaktoren hinaus sind Informationen über die quantitativen Auswirkungen der Vermeidung der Risikofaktoren für integrierte Mykotoxinreduktionsstrategien notwendig. Es war das Ziel dieses Übersichtsartikels, den quantitativen Nutzen der Vermeidung von Risikofaktoren und des Fungizideinsatzes auf der Basis der veröffentlichten Literatur zu schätzen. Die Effizienz eingesetzter Triazolfungizide zur Verringerung des DON-Gehaltes im Weizen war in den veröffentlichten Studien signifikant unterschiedlich (P= 0.004). Dieser Effekt basierte auf einer geringen Wirkung von Fenbuconazol. Ein Test ohne Fenbuco-nazol ergab, dass es keine signifikanten Wirksamkeitsunterschiede zwischen den anderen Triazolfungiziden gab. Im Mittel der Studien wurde der DON-Gehalt im Erntegut durch den Einsatz von Triazolfungiziden im Zeitraum um die Weizenblüte auf 53 ± 4% im Vergleich zu unbehandelten Kontrollen gesenkt. Der DON-Gehalt von Weizen, der auf Flächen mit anderen Vorfrüchten als Mais angebaut wurde, lag bei 33 ± 11% der Flächen, bei denen Mais die Vorfrucht war. Durch den Einsatz des Wendepfluges wurde der DON-Gehalt im Mittel der Studien auf 33 ± 7% der Gehalte bei fehlender oder minimaler Bodenbearbeitung gesenkt. Durch den Anbau wenig anfälliger Sorten sank der DON-Gehalt auf bis zu 24 ± 7% im Vergleich zu anfälligen Sorten. Damit ist zurzeit der Anbau wenig anfälliger Sorten die effizienteste pflanzenbauliche Strategie, um DON-Gehalte im Weizen zu senken, gefolgt vom Einsatz des Wendepfluges, der Vermeidung der Vorfrucht Mais und Triazolfungizidapplikationen zur Weizenblüte. Wenn DON-Gehalte aus Referenzszenarien (z.B. langjährige Mittelwerte für bestimmte Anbausysteme und Regionen) bekannt sind, können die hier extrahierten Faktoren nützlich sein, um abzuschätzen, wie viele und welche Risikofaktoren vermieden werden müssen, um die jeweils geltenden Grenzwerte einhalten zu können.

Stichwörter

Fusarium culmorum Fusarium graminearum Integrierter Pflanzenschutz Mykotoxin Taubährigkeit Trichothecen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. ALR, 2002: Versuchsbericht 2002 — Ackerbau. ämter für ländliche Räume Husum, Kiel und Lübeck — Abteilungen Pflanzenschutz, p. 50.Google Scholar
  2. ALR, 2003: Versuchsbericht 2003 — Ackerbau. ämter für ländliche Räume Husum, Kiel und Lübeck — Abteilungen Pflanzenschutz, p. 51.Google Scholar
  3. Aufhammer, W., W. Hermann, E. Kübler, 1999: Fusarium (F. graminearum) infection of ears and toxin concentration of grains of winter wheat, triticale and rye depending on cultivars and production intensity. Pflanzenbauwissenschaften 3, 32–39.Google Scholar
  4. Aufhammer, W., E. Kübler, H.-P. Kaul, W. Hermann, D. Höhn, C. Yi, 2000: Infection with head blight (F. graminearum, F. culmorum) and deoxynivalenol concentration in winter wheat as influenced by N-fertilization. Pflanzenbauwissenschaften 4, 72–78.Google Scholar
  5. Bai, G.-H., G. Shaner, H. Ohm, 2000: Inheritance of resistance to Fusarium graminearum in wheat. Theor. Appl. Genet. 100, 1–8.CrossRefGoogle Scholar
  6. Baur, P., 1997: Lognormal distribution of water permeability and organic solute mobility in plant cuticles. Plant Cell Environ. 20, 167–177.CrossRefGoogle Scholar
  7. Beyer, M., M. Knoche, 2002: Studies on water transport through the sweet cherry fruit surface: V. Conductance for water uptake. J. Am. Soc. Hort. Sci. 127, 325–332.Google Scholar
  8. Bottalico, A., 1998: Fusarium diseases of cereals: species complex and related mycotoxin profiles, in Europe. J. Plant Pathol. 80, 85–103.Google Scholar
  9. BSA, 2004: Beschreibende Sortenliste 2004: Getreide, Mais, ölfrüchte, Leguminosen, Hackfrüchte. Deutscher Landwirtschaftsverlag, Hannover, Germany.Google Scholar
  10. Buerstmayr, H., B. Steiner, M. Lemmend, P. Ruckenbauer, 2000: Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci. 40, 1012–1018.CrossRefGoogle Scholar
  11. Campbell, K.A.G., P.E. Lipps, 1999: Allocation of resources: sources of variation in Fusarium head blight screening nurseries. Phytopathology 88, 1078–1086.CrossRefGoogle Scholar
  12. Cumagun, C.J., R.T. Miedaner, 2004: Segregation for aggressiveness and deoxynivalenol production of a population of Gibberella zeae causing head blight of wheat. Eur. J. Plant Pathol. 110, 789–799.CrossRefGoogle Scholar
  13. Desjardins, A.E., T.M. Hohn, S.P. Mccormick, 1993: Trichothecene biosynthesis in Fusarium species: Chemistry, genetics and significance. Microbiol. Rev. 57, 595–604.PubMedPubMedCentralGoogle Scholar
  14. Dill-Macky, R., R.K. Jones, 2000: The effect of previous crop residues and tillage on Fusarium head blight of wheat. Plant Dis. 84, 71–76.CrossRefGoogle Scholar
  15. Edwards, S.G., 2004: Influence of agricultural practices on Fusarium infection of cereals and subsequent contamination of grain by trichothecene mycotoxins. Toxicol. Lett. 153, 29–35.CrossRefPubMedGoogle Scholar
  16. Edwards, S.G., S.R. Pirgozliev, M.C. Hare, P. Jenkinson, 2001: Quantification of trichothecene-producing Fusarium species in harvested grain by competitive Pcr to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl. Environ. Microbiol. 67, 1575–1580.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ellner, F.M., 2001: Fusarium-Toxine in Getreide — Vorkommen und Vermeidungsstrategien. Tagungsband der 13. und 14. wissenschaftlichen Fachtagung der Rheinischen Friedrich — Wilhelms-Universität Bonn 13, 14–22.Google Scholar
  18. FAO, 2004: Worldwide regulations for mycotoxins in food and feed in 2003. FAO food and nutrition paper 81. Food and Agriculture Organization of the United Nations, Rome [ftp://ftp.FAO.org/docrep/FAO/007/y5499e/y5499e00.pdf].Google Scholar
  19. Gervais, L., F. Dedryver, J.-Y. Morlais, V. Bodusseau, S. Negre, M. Bilous, C. Groos, M. Trottet, 2003: Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theor. Appl. Genet. 106, 961–970.PubMedGoogle Scholar
  20. Haidukowski, M., M. Pascale, G. Perrone, D. Pancaldi, C. Campagna, A. Visconti, 2005: Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum. J. Sci. Food Agric. 85, 191–198.CrossRefGoogle Scholar
  21. Heier, T., S.K. Jain, K.-H. Kogel, J. Pons-Kühnemann, 2005: influence of N-fertilization and fungicide strategies on Fusarium head blight severity and mycotoxin content in winter wheat. J. Phytopathol. 153, 551–557CrossRefGoogle Scholar
  22. Heitefuss, R., M. Jahn, F. Klingauf, 2004: Verhinderung oder Begrenzung des Befalls durch den gezielten Einsatz von Pflanzenschutzmitteln, Pflanzenstärkungsmitteln und den biologischen Pflanzenschutz. Schriftenr. Deut. Phytomed. Ges. 7, 49–64.Google Scholar
  23. Henriksen, B., O. Elen, 2005: Natural Fusarium grain infection level in wheat, barley and oat after early application of fungicides and herbicides. J. Phytopathol. 153, 214–220.CrossRefGoogle Scholar
  24. Hilton, J.A., P. Jenkinson, T.W. Hollins, D.W. Parry, 1999: Relationship between cultivar height and severity of Fusarium ear blight in wheat. Plant Pathol. 48, 202–208.CrossRefGoogle Scholar
  25. Homdork, S., H. Fehrmannn, R. Beck, 2000: Effects of field application of tebuconazole on yield, yield components and the mycotoxin content of Fusarium-infected wheat grain. J. Phytopathol. 148, 1–6.CrossRefGoogle Scholar
  26. Jansen, C., D. von Wettstein, W. Schäfer, K.-H. Kogel, A. Felk, F. J. Maier, 2005: Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc. Nat. Acad. Sci. USA 102, 16892–16897.CrossRefPubMedPubMedCentralGoogle Scholar
  27. JECFA, 2001: Summary and conclusions of the 56th meeting of the Joint FAO/WHO Expert Committee on Food Additives. Geneva, 6–15 February 2001 [www.who.int/ipcs/food/jecfa/ummaries/en/summary_56.pdf].Google Scholar
  28. Jones, R.K., 2000: Assessment of Fusarium head blight of wheat and barley in response to fungicide treatment. Plant Dis. 84, 1021–1030.CrossRefGoogle Scholar
  29. Kolb, F.L., G.H. Bai, G.J. Muehlbauer, J.A. Anderson, K.P. Smith, G. Fedak, 2001: Host plant resistance genes for Fusarium head blight: mapping and manipulation with molecular markers. Crop Sci. 41, 611–619.CrossRefGoogle Scholar
  30. Klix, M.B., J.-A. Verreet, M. Beyer, 2006: Comparison of the declining triazole sensitivity of Gibberella zeae and increased sensitivity achieved by advances in triazole fungicide development. Crop Prot., in press (doi: 10.1016/j.cropro.2006.06.006).Google Scholar
  31. Lemmens, M., K. Haim, H. Lew, P. Ruckenbauer, 2004: The effect of nitrogen fertilization on Fusarium head blight development and deoxynivalenol contamination in wheat. J. Phytopathol. 152, 1–8.CrossRefGoogle Scholar
  32. Lienemann, K., E.-C. Oerke, H.-W. Dehne, 2000: Effect of differences among wheat genotypes on the occurrence and damage caused by Fusarium head blight. Mitt. Biol. Bundesanst. Land. Forstwirtsch. 377, 26.Google Scholar
  33. Menniti, M., D. Pancaldi, M. Maccaferri, L. Casalini, 2003: Effect of fungicides on Fusarium head blight and deoxynivalenol content in durum wheat grain. Eur. J. Plant Pathol. 109, 109–115.CrossRefGoogle Scholar
  34. Mesterházy, Á., 2002: Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur. J. Plant Pathol. 108, 675–684.CrossRefGoogle Scholar
  35. Mesterházy, Á., T. Bartok, C.G. Mirocha, 1999: Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118, 97–110.CrossRefGoogle Scholar
  36. Mesterházy, Á., T. Bartok, C. Lamper, 2002: Influence of wheat cultivar, species of Fusarium, and isolate aggressiveness on the efficacy of fungicides for control of Fusarium head blight. Plant Dis. 87, 1107–1115.CrossRefGoogle Scholar
  37. Miller, J.D., R. Greenhalgh, 1985: Nutrient effects on the biosynthesis of trichothecenes and other metabolites by Fusarium graminearum. Mycologia 77, 130–136.CrossRefGoogle Scholar
  38. Milus, E.A., C.E. Parsons, 1994: Evaluation of foliar fungicides for controlling Fusarium head blight. Plant Dis. 78, 697–699.CrossRefGoogle Scholar
  39. Obst, A., J. Lepschy, R. Beck, G. Bauer, A. Bechtel, 2000: The risk of toxins by Fusarium graminearum in wheat — interactions between weather and agronomic factors. Mycotoxin Res. 16A, 16–20.CrossRefGoogle Scholar
  40. Rotter, B.A., D.B. Prelusky, J.J. Pestka, 1996: Toxicology of deoxynivalenol (vomitoxin). J. Toxicol. Environ. Health 48, 1–34.CrossRefPubMedGoogle Scholar
  41. Rudd, J.C., R.D. Horsley, A.L. Mckendry, E.M. Elias, 2001: Host plant resistance genes for Fusarium head blight: Sources, mechanisms, and utility in conventional breeding systems. Crop Sci. 41, 620–627.CrossRefGoogle Scholar
  42. Schaafsma, A.W., L. Tambric-Ilinic, J.D. Miller, D.C. Hooker, 2001: Agronomic considerations for reducing deoxynivalenol in wheat grain. Can. J. Plant Pathol. 23, 279–285.CrossRefGoogle Scholar
  43. Schollenberger, M., H.T. Jara, S. Sucy, W. Drochner, H.M. Müller, 2002: Fusarium toxins in wheat flour collected in an area in southwest Germany. Int. J. Food Microbiol. 72, 85–89.CrossRefPubMedGoogle Scholar
  44. Schroeder, H.W., J.J. Christensen, 1963: Factors affecting resistance of wheat scab caused by Gibberella zeae. Phytopathology 53, 831–838.Google Scholar
  45. Simpson, D.R., G.E. Weston, J.A. Turner, P. Jennings, P. Nicholson, 2001: Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain. Eur. J. Plant Pathol. 107, 421–431.CrossRefGoogle Scholar
  46. Siranidou, E., H. Buchenauer, 2001: Chemical control of Fusarium head blight on wheat. Z. Pflanzenk. Pflanzen. J. Plant Dis. Protect. 108, 231–243.Google Scholar
  47. Snijders, C.H.A., F.A. van Eeuwijk, 1991: Genotype by strain interactions for resistance to Fusarium head blight caused by Fusarium culmorum in winter wheat. Theor. Appl. Genet. 81, 239–244.CrossRefPubMedGoogle Scholar
  48. Teich, A.H., J.R. Hamilton, 1985: Effect of cultural practices, soil phosphorous, potassium, and pH on the incidence of Fusarium head blight and deoxynivalenol levels in wheat. Appl. Environ. Microbiol. 49, 1429–1431.PubMedPubMedCentralGoogle Scholar
  49. van Arendonk, J.J.C.M., G.J. Niemann, J.J. Boon, H., Lambers, 1997: Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image-processing analysis and pyrolysis-mass spectrometry. Plant cell Environ. 20, 881–897.CrossRefGoogle Scholar
  50. van Ginkel, M., W. van Der Schaar, Y. Zhupping, S. Rajaram, 1995: inheritance to scab in two wheat cultivars from Brazil and China. Plant Dis. 80, 863–867.CrossRefGoogle Scholar
  51. Wiersma, J.J., C.D. Motteberg, 2005: Evaluation of five fungicide application timings for control of leaf-spot diseases and Fusarium head blight in hard red spring wheat. Can. J. Plant Pathol. 27, 25–37.CrossRefGoogle Scholar
  52. Yi, C., H.P. Kaul, E. Kübler, K. Schwadorf, W. Aufhammer, 2001: Head blight (Fusarium graminearum) and deoxynivalenol concentration in winter wheat as affected by pre-crop, soil tillage and nitrogen fertilization. z. Pflanzenk. Pflanzen. J. Plant Dis. Protect. 108, 217–230.Google Scholar
  53. Zadoks, C., T.T. Chang, C.F. Konzak, 1974: A decimal code for the growth stages of cereals. Weed Res. 14, 415–421.CrossRefGoogle Scholar

Copyright information

© Deutsche Phythomedizinische Gesellschaft 2006

Authors and Affiliations

  • M. Beyer
    • 1
  • M. B. Klix
    • 1
  • H. Klink
    • 1
  • J.-A. Verreet
    • 1
  1. 1.Institute of PhytopathologyUniversity of KielKielGermany

Personalised recommendations