Folia Microbiologica

, Volume 49, Issue 4, pp 339–352 | Cite as

Natural microbial UV radiation filters — Mycosporine-like amino acids

  • T. ŘezankaEmail author
  • M. Temina
  • A. G. Tolstikov
  • V. M. Dembitsky


Ozone depletion by anthropogenic gases has increased the atmospheric transmission of solar ultraviolet-B radiation (UV-B, 280–315 nm). There is a logical link between the natural defenses of terrestrial and marine organisms against UV radiation and the prevention of UV-induced damage to human skin. UV light degrades organic molecules such as proteins and nucleic acids, giving rise to structural changes that directly affect their biological function. These compounds offer the potential for development of novel UV blockers for human use. The biological role of mycosporine-like amino acids (MAAs) and scytonemin as a defense against solar radiation in organisms, together with their structure, synthesis, distribution, regulation and effectiveness, are reviewed in this article. This review points to the role of MAAs as a natural defense against UV radiation.


Ozone Depletion Total Ozone Column Scytonemin Terrestrial Cyanobacterium Photoprotective Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



ultraviolet-A radiation (315–400 nm)


ultraviolet-B radiation (280–315 nm)


ultraviolet-C radiation (100–280 nm)


mycosporine-like amino acid


liquid chromatography coupled with electrospray ionization mass spectrometry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikary S.P., Sahu J.K.: UV protecting pigment of the terrestrial cyanobacterium Tolypothrix byssoidea. J.Plant Physiol. 153, 770–773 (1998).CrossRefGoogle Scholar
  2. Arai T., Nishijima M., Adachi K., Sano H.: Isolation and structure of a UV absorbing substance from the marine bacterium Micrococcus sp. Inst.Marine Biotechnol.Rep.Tokyo 334, 88–94 (1992).Google Scholar
  3. Arpin N., Curt R., Favre-Bonvin J.: Mycosporines: mise au point et données nouvelles concernant leurs structures, leur distribution, leur localisation et leur biogenèse. Rev.Mycol. 43, 247–257 (1979).Google Scholar
  4. Bandaranayake W.M.: Mycosporines: Are they nature’s sunscreens? Nat.Prod.Rep. 15, 159–172 (1998).CrossRefPubMedGoogle Scholar
  5. Banerjee M., Hader D.P.: Effects of UV radiation on the rice field cyanobacterium, Aulosira fertilissima. Environ.Exper.Botany 36, 281–291 (1996).CrossRefGoogle Scholar
  6. Bohm G.A., Pfleiderer W., Böger P., Scherer S.: Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J.Biol.Chem. 270, 8536–8539 (1995).CrossRefPubMedGoogle Scholar
  7. Büdel B., Karsten U., Garcia-Pichel F.: Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112, 165–172 (1997).CrossRefGoogle Scholar
  8. Buscot F., Bernillon J.: Mycosporins and related compounds in field and cultured mycelial structures of Morchella esculenta. Mycol.Res. 95, 752–754 (1991).CrossRefGoogle Scholar
  9. Carreto J.I., Carignan M.O., Daleo G., De Marco S.G.: Occurrence of mycosporine-like amino acids in the red-tide dinoflagellate Alexandrium excavatum: UV-photoprotective compounds? J.Plankton Res. 121, 909–921 (1990).CrossRefGoogle Scholar
  10. de Chazal N.M., Smith G.D.: Characterization of a brown Nostoc sp. from Java that is resistant to high light intensity and UV. Microbiology 140, 3183–3189 (1994).CrossRefGoogle Scholar
  11. Donkor V.A., Hader D.P.: Effects of ultraviolet irradiation on photosynthetic pigments in some filamentous cyanobacteria. Aquat.Microb.Ecol. 11, 143–149 (1996).CrossRefGoogle Scholar
  12. Donkor V.A., Hader D.P.: Ultraviolet radiation effects on pigmentation in the cyanobacterium Phormidium uncinatum. Acta Protozool. 36, 49–55 (1997).Google Scholar
  13. Dunlap W.C., Shick J.M.: Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J.Phycol. 34, 418–430 (1998).CrossRefGoogle Scholar
  14. Dunlap W.C., Yamamoto Y.: Small-molecule antioxidants in marine organisms: antioxidant activity of mycosporine-glycine. Comp. Biochem.Physiol. 112B, 105–114 (1995).CrossRefGoogle Scholar
  15. Dunlap W.C., Chalker B.E., Oliver J.K.: Bathymetric adaptations of reef-building corals at Davies Reef, Great Barrier Reef, Australia. III. UV-B absorbing compounds. J.Exp.Mar.Biol.Ecol. 104, 239–248 (1986).CrossRefGoogle Scholar
  16. Dunlap W.C., Masaki K., Yamamoto Y., Larsen R.M., Karube I.: A novel antioxidant derived from seaweed, pp. 33–35 in New Developments in Marine Biotechnology (Y. LeGal, H. Halvorson, Eds). Plenum Press, New York 1998.CrossRefGoogle Scholar
  17. Ehling-Schulz M., Bilger W., Scherer S.: UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J.Bacteriol. 179, 1940–1945 (1997).PubMedCentralPubMedGoogle Scholar
  18. Enk D.C., Hochberg M., Torres A., Lev O., Dor I., Niddam V., Dembitsky V.M., Srebnik M.: Novel UV-B compound from lichen Collema cristatum. Israel Pat.Appl. IL02/00725 (2002).Google Scholar
  19. Favre-Bonvin J., Arpin N., Brevard C.: Structure de la mycosporine (P310). Can.J.Chem. 54, 1105–1113 (1976).CrossRefGoogle Scholar
  20. Galun M. (Ed.): Handbook of Lichenology, Vol. 2. CRC Press, Boca Raton (FL) 1988.Google Scholar
  21. Garcia-Pichel F., Castenholz R.W.: Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J.Phycol. 27, 395–409 (1991).CrossRefGoogle Scholar
  22. Garcia-Pichel F., Castenholz R.W.: Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimation of their screening capacity. Appl.Environ.Microbiol. 59, 163–169 (1993).PubMedCentralPubMedGoogle Scholar
  23. Garcia-Pichel F., Sherry N., Castenholz R.W.: Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium, Chlorogloeposis sp. Photochem.Photobiol. 56, 17–23 (1992).CrossRefPubMedGoogle Scholar
  24. Garcia-Pichel F., Wingard C.E., Castenholz R.W.: Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl.Environ.Microbiol. 59, 170–176 (1993).PubMedCentralPubMedGoogle Scholar
  25. Garcia-Pichel F., Castenholz R.W.: Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimation of their screening capacity. Appl.Environ.Microbiol. 59, 163–169 (1993).PubMedCentralPubMedGoogle Scholar
  26. Gorbushina A.A., Whitehead K., Dornieden T., Niesse A., Schulte A., Hedges J.I.: Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can.J.Bot. 81, 131–138 (2003).CrossRefGoogle Scholar
  27. Gröniger A., Sinha R.P., Klisch M., Hader D.P.: Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae — a database. J.Photochem.Photobiol. B: Biology 58, 115–122 (2000).CrossRefPubMedGoogle Scholar
  28. Ha-Duong M., Megie G.: Hauglustaine A pro-active stratospheric ozone protection scenario. Global Environ.Change 13, 43–49 (2003).CrossRefGoogle Scholar
  29. Hader D.P., Worrest R.C.: Consequences of the effects of increased solar ultraviolet radiation on aquatic ecosystems, pp. 11–30 in The Effects of Ozone Depletion on Aquatic Ecosystems (D.P. Hader, Ed.), chapter 3, Environmental Intelligence Unit. Academic Press-R.G. Landes Co., Austin 1997.Google Scholar
  30. Hader D.P., Kumar H.D., Smith R.C., Worrest R.C.: Effects on aquatic ecosystems. J.Photochem.Photobiol. B 46, 53–68 (1998).CrossRefGoogle Scholar
  31. Hannach G., Sigleo A.C.: Photoinduction of UV-absorbing compounds in six species of marine phytoplankton. Mar.Ecol.Progr.Ser. 174, 207–222 (1998).CrossRefGoogle Scholar
  32. Helbling E.W., Chalker B.E., Dunlap W.C., Holm-Hansen O., Villafane V.E.: Photoacclimation of Antarctic diatoms to solar ultraviolet radiation. J.Exp.Mar.Biol.Ecol. 204, 85–101 (1996).CrossRefGoogle Scholar
  33. Jiang Y.B., Yung Y.L., Sander S.P., Travis L.D.: Modeling of atmospheric radiative transfer with polarization and its application to the remote sensing of tropospheric ozone. J.Quantit.Spectr.Rad.Transfer 84, 169–179 (2004).CrossRefGoogle Scholar
  34. Kane R.P.: Mismatch between variations of solar indices, stratospheric ozone and UV-B observed at ground. J.Atmospher.Solar-Terrestr.Phys. 64, 2063–2074 (2002).CrossRefGoogle Scholar
  35. Karentz D.: Chemical defenses of marine organisms against solar radiation exposure: UV-absorbing mycosporine-like amino acids and scytonemin, pp. 481–520 in Marine Chemical Ecology (J.B. McClintock, B.J. Baker, Eds). CRC Press, Boca Raton (FL) 2001.CrossRefGoogle Scholar
  36. Karsten U., Garcia-Pichel F.: Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (Cyanobacteria): a chemosystematic study. Syst.Appl.Microbiol. 19, 285–294 (1996).CrossRefGoogle Scholar
  37. Kedar L., Kashman Y., Oren A.: Mycosporine-2-glycine is the major mycosporine-like amino acid in a unicellular cyanobacterium (Euhalothece sp.) isolated from a gypsum crust in a hypersaline saltern pond. FEMS Microbiol.Lett. 208, 233–237 (2002).CrossRefPubMedGoogle Scholar
  38. Kumar A., Tyagi M.B., Srinivas G., Singh N., Kumar H.D., Sinha R.P., Hader D.P.: UV-B shielding role of FeCl3 and certain cyanobacterial pigments. Photochem.Photobiol. 64, 321–325 (1996).CrossRefGoogle Scholar
  39. Leach C.M.: Ultraviolet-absorbing substances associated with light-induced sporulation in fungi. Can.J.Bot. 43, 185–200 (1965).CrossRefGoogle Scholar
  40. Lee H.W., Oh C.H., Geyer A., Pfeiderer W., Park Y.S.: Characterization of a novel unconjugated pteridine glycoside, cyanopterin, in Synechocystis sp. PCC 6803. Biochim.Biophys.Acta 1410, 61–70 (1999).CrossRefPubMedGoogle Scholar
  41. Lesser M.: Acclimation of phytoplankton to UV-B radiation: oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar.Ecol.Progr.Ser. 132, 287–297 (1996).CrossRefGoogle Scholar
  42. Maragos J.E.: A study of the ecology of Hawaiian reef corals. PhD Thesis. University of Hawaii, Honolulu 1972.Google Scholar
  43. Marchant H.J., Davidson A.T., Kelly G.J.: UV-B protecting compounds in the marine alga Phaeocystis pouchetii from Antarctica. Mar.Biol. 109, 391–395 (1991).CrossRefGoogle Scholar
  44. McCulloch A.: Fluorocarbons in the global environment: a review of the important interactions with atmospheric chemistry and physics. J.Fluor.Chem. 123, 21–29 (2003).CrossRefGoogle Scholar
  45. Montero O., Lubian L.M.: Mycosporine-like amino acid (MAAs) production by Heterocapasa sp. (Dinophyceae) in indoor cultures. Biomol.Engineer. 20, 183–189 (2003).CrossRefGoogle Scholar
  46. Neale P.J., Davis R.F., Cullen J.J.: Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392, 585–589 (1998).CrossRefGoogle Scholar
  47. de Nys R., Steinberg P.D.: Linking marine biology and biotechnology. Curr.Opin.Biotechnol. 13, 244–248 (2002).CrossRefPubMedGoogle Scholar
  48. Okaichi T., Tokumura T.: Isolation of cyclohexene derivatives from Noctiluca miliaris Suriray, pp. 664–671 in 23rd Symp. Chemistry of Natural Products (Nagoya). Chemical Society of Japan, Tokyo 1980.Google Scholar
  49. Oren A.: Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol.J. 14, 231–240 (1997).CrossRefGoogle Scholar
  50. Pentecost A.: Field relationships between scytonemin density, growth and irradiance in cyanobacteria occurring in low illumination regimes. Microb.Ecol. 26, 101–110 (1993).CrossRefPubMedGoogle Scholar
  51. Platt U., Honninger G.: The role of halogen species in the troposphere. Chemosphere 52, 325–338 (2003).CrossRefPubMedGoogle Scholar
  52. Portwich A., Garcia-Pichel F.: A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC6912. Photochem.Photobiol. 71, 493–498 (2000).CrossRefPubMedGoogle Scholar
  53. Price J.H., Forrest H.S.: 310 nm absorbance in Physalia physalis: distribution of the absorbance and isolation of a 310 nm absorbing compound. Comp.Biochem.Physiol. 30, 879–888 (1969).CrossRefGoogle Scholar
  54. Proteau P.J., Gerwick W.H., Garcia-Pichel F., Castenholz R.W.: The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49, 825–829 (1993).CrossRefPubMedGoogle Scholar
  55. Quesada A., Vincent W.F., Lean D.R.S.: Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol.Ecol. 28, 315–323 (1999).CrossRefGoogle Scholar
  56. Rai A.N. (Ed.): CRC Handbook of Symbiotic Cyanobacteria, chapter 2. CRC Press, Boca Raton (FL) 1993.Google Scholar
  57. Riegger L., Robinson D.: Photoinduction of UV-absorbing compounds in Antarctic diatoms and Phaeocystis antarctica. Mar.Ecol.Progr.Ser. 160, 13–25 (1997).CrossRefGoogle Scholar
  58. Roy S.: Strategies for the minimization of UV-induced damage, pp. 177–205 in S. de Mora, S. Demers, M. Vernet, Eds): The Effects of UV Radiation in the Marine Environment. Cambridge University Press, Cambridge (UK) 2000.CrossRefGoogle Scholar
  59. Rozema J., Bjorn L.O., Bornman J.F., Gaberscik A., Hader D.P., Trost T., Germ M., Klisch M., Gröniger A., Sinha R.P., Lebert M., He Y.Y., Buffoni-Hall R., de Bakker N.V.J., van de Staaij J., Meijkamp B.B.: The role of UV-B radiation in aquatic and terrestrial ecosystems — an experimental and functional analysis of the evolution of UV-absorbing compounds. J.Photochem.Photobiol. B 66, 2–12 (2002).CrossRefPubMedGoogle Scholar
  60. Saraf N., Beig G.: Solar response in the vertical structure of ozone and temperature in the tropical stratosphere. J.Atm.Solar-Terrestr.Phys. 65, 1235–1243 (2003).CrossRefGoogle Scholar
  61. Scherer S., Chen T.W., Boger P.: A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol. 88, 1055–1057 (1988).CrossRefPubMedCentralPubMedGoogle Scholar
  62. Shashar N., Banaszak A.T., Lesser M.P., Amrani D.: Coral endolithic algae: life in a protected environment. Pacif.Sci. 51, 167–173 (1997).Google Scholar
  63. Shibata K.: Pigments and a UV absorbing substance in corals and a blue green alga living in the Great Barrier Reef. Plant Cell Physiol. 10, 325–335 (1969).Google Scholar
  64. Shick J.M., Dunlap W.C.: Mycosporine-like amino acids and related gadusols: biosynthesis, accumulation, and UV-protective functions in aquatic organisms. Ann.Rev.Physiol. 64, 223–262 (2002).CrossRefGoogle Scholar
  65. Shick J.M., Dunlap W.C., Chalker B.E., Banaszak A.T., Rosenzweig T.K.: Survey of ultraviolet radiation absorbing mycosporine-like amino acids in organs of coral reef holothuroids. Mar.Ecol.Progr.Ser. 90, 139–148 (1992).CrossRefGoogle Scholar
  66. Sinha R.P., Hader D.P.: Photobiology and ecophysiology of rice field cyanobacteria. Photochem.Photobiol. 64, 887–896 (1996).CrossRefGoogle Scholar
  67. Sinha R.P., Hader D.P.: Impacts of UV-B irradiation on rice-field cyanobacteria, pp. 189–198 in The Effects of Ozone Depletion on Aquatic Ecosystems (D.P. Hader, Ed.), chapter 9. Environmental Intelligence Unit. Academic Press-R.G. Landes Co., Austin 1997.Google Scholar
  68. Sinha R.P., Klisch M., Hader D.P.: Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp by UV irradiation. J.Photochem.Photobiol. B 52, 59–64 (1999).CrossRefGoogle Scholar
  69. Sivalingam P.M., Ikawa T., Nisizawa K.: Possible physiological roles of a substance showing characteristic UV-absorbing patterns in some marine algae. Plant Cell Physiol. 15, 583–586 (1974).Google Scholar
  70. Sommaruga R., Garcia-Pichel F.: UV-absorbing mycosporine-like compounds in planktonic and benthic organisms from a high-mountain lake. Arch.Hydrobiol. 144, 255–269 (1999).Google Scholar
  71. Takahashi T., Feely R.A., Weiss R.F., Wanninkhof R.H., Chipman D.W., Sutherland S.C., Takahashi T.: Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 difference. Proc.Nat.Acad.Sci.USA 94, 8282–8299 (1997).Google Scholar
  72. Torres A., Pergament I., Smoum R., Niddam V., Dembitsky V.M., Temina M., Hochberg M., Dor I., Enk D.C., Lev O., Srebnik M.: A new UV-B-absorbing mycosporine with photo-protective activity from the lichenized ascomycete Collema cristatum. Eur.J.Biochem. 271, 780–784 (2004).CrossRefPubMedGoogle Scholar
  73. Tsujino I.: Studies on the compounds specific for each group of marine algae. II. Extraction and isolation of characteristic ultraviolet absorbing material in Rhodophyta. Bull.Fac.Fisheries, Hokkaido Univ. 12, 59–65 (1961).Google Scholar
  74. Turian G.: Primary colonisation of concrete walls by a UV-protectively pigmented Chrysocapsa (cyanobacteria). Saussurea 16, 43–48 (1985).Google Scholar
  75. Vernet M., Smith R.C.: Effects of ultraviolet radiation on the pelagic Antarctic ecosystem, pp. 247–265 in The Effects of Ozone Depletion on Aquatic Ecosystems (D.-P. Hader, Ed.), chapter 16, Environmental Intelligence Unit. Academic Press-R.G. Landes Co., Austin (USA) 1997.Google Scholar
  76. Vernet M., Whitehead K.: Release of ultraviolet-absorbing compounds by the red-tide dinoflagellate Lingulodinium polyedra. Mar. Biol. 127, 35–44 (1996).CrossRefGoogle Scholar
  77. Vincent W.F., Downes M.T., Castenholz R.W., Howard-Williams C.: Community structure and pigment organization of cyanobacteria-dominated microbial mats in Antarctica. Eur.J.Phycol. 28, 213–221 (1993).CrossRefGoogle Scholar
  78. Volkmann M., Whitehead K., Rutters H., Rullkotter J., Gorbushina A.A.: Mycosporine-glutamicol-glucoside: a natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Comm.Mass Spectrom. 17, 897–902 (2003).CrossRefGoogle Scholar
  79. Xiong F., Komenda J., Kopecký J., Nedbal L.: Strategies of ultraviolet-B protection in microscopic algae. Physiol.Plant. 100, 378–388 (1997).CrossRefGoogle Scholar
  80. Xiong F., Kopecký J., Nedbal L.: The occurrence of UV-B absorbing mycosporine-like amino acids in freshwater and terrestrial microalgae. Aquat.Bot. 63, 37–49 (1999).CrossRefGoogle Scholar
  81. Young H., Patterson V.J.: A UV protective compound from Glomerella cingulata — a mycosporine. Phytochemistry 21, 1075–1077 (1982).CrossRefGoogle Scholar
  82. Wangberg S.A., Persson A., Karlson B.: Effects of UV-B radiation on synthesis of mycosporine-like amino acids and growth in Heterocapsa triquetra (Dinophyceae). J.Photochem.Photobiol. B 37, 141–146 (1997).CrossRefGoogle Scholar
  83. Whitehead K., Hedges J.I.: Analysis of mycosporine-like amino acids in plankton by liquid chromatography electrospray ionization mass spectrometry. Mar.Chem. 80, 27–39 (2002).CrossRefGoogle Scholar
  84. Wittenburg J.B.: The source of carbon monooxide in the float of the Portugese man-of-war Physalia physalis L. J.Exp.Biol. 37, 698–705 (1960).Google Scholar

Copyright information

© Institute of Microbiology, v.v.i, Academy of Sciences of the Czech Republic 2004

Authors and Affiliations

  • T. Řezanka
    • 1
    Email author
  • M. Temina
    • 2
  • A. G. Tolstikov
    • 3
  • V. M. Dembitsky
    • 3
  1. 1.Institute of MicrobiologyAcademy of Sciences of the Czech RepublicPragueCzechia
  2. 2.Biodiversity and Biotechnology Center of Cryptogamic Plants and Fungi, Institute of EvolutionHaifa UniversityHaifaIsrael
  3. 3.N.D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations