International Journal of Thermophysics

, Volume 15, Issue 4, pp 687–697 | Cite as

Critical scaling laws and a classical equation of state

  • A. van Pelt
  • G. X. Jin
  • J. V. Sengers


In this paper we present a method which modifies a classical equation of state by incorporating the nonclassical critical behavior. As an example we have applied our procedure to the Carnahan-Starling-DeSantis (CSD) equation of state. The resulting equation reproduces the universal scaling behavior near the critical point and reduces to the universal ideal-gas behavior at low densities. We show that the renormalized CSD equation yields an improved and consistent representation of both mechanical and caloric thermodynamic properties. In addition, the suppression of the critical temperature due to the critical fluctuations is clearly demonstrated.

Key words

Carnahan-Starling equation coexistence curve critical phenomena equation of state R 134a thermodynamic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. V. Sengers and J. M. H. Levelt Sengers, Annu. Rev. Phys. Chem. 37:1R9 (1986).CrossRefGoogle Scholar
  2. 2.
    J. V. Sengers, in Supercritical Fluids: Fundamentals for Application, F. Kiran and J. M. H. Levelt Sengers, eds. (Kluwer, Dordrecht, The Netherlands), p. 231.Google Scholar
  3. 3.
    Z. Y. Chen, A. Abbaci, S. Tang, and J. V. Sengers, Phys. Rev. A 42:4470 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    R. DeSantis, F. Gironi, and L. Marrelli, Ind. Eng. Chem. Fundam. 15:183 (1976).CrossRefGoogle Scholar
  5. 5.
    N. F. Carnahan and K. E. Starling, J. Chem. Phys. 51:635 (1969); 53:600 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    G. Morrison and M. O. McLinden, NBS Technical Note 1226: Application of a Hard Sphere Equation of State to Refrigerants and Refrigerant Mixtures (U.S. Government Printing Office, Washington, DC, 1986).Google Scholar
  7. 7.
    G. A. Chapela and J. S. Rawlinson, J. Chem. Soc. Faraday Trans. I 70:584 (1974).CrossRefGoogle Scholar
  8. 8.
    G. X. Jin, Ph.D. thesis (University of Maryland, College Park, MD, 1993).Google Scholar
  9. 9.
    G. X. Jin, J. V. Sengers, and S. Tang, to be published.Google Scholar
  10. 10.
    S. Tang, J. V. Sengers, and Z. Chen, Physica A 179:344 (1991).ADSCrossRefGoogle Scholar
  11. 11.
    C. Baroncini, G. Giuliani, M. Pacetti, and F. Polonara, Proceedings of the Meeting of Commission B1, International Institute of Refrigeration, Herzlia, Israel (1990), p. 83Google Scholar
  12. 12.
    R. S. Basu and D. P. Wilson, Int. J. Thermophys. 10:591 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    R. Doering and H. Buchwald, DKV-Tagungsber. 16:225 (1989).Google Scholar
  14. 14.
    C.-C. Piao, H. Sato, and K. Watanabe, ASHRAE Trans. 96:132 (1990).Google Scholar
  15. 15.
    Z.-Y. Qian, H. Sato, and K. Watanable, Fluid Phase Equil. 78:323 (1992).CrossRefGoogle Scholar
  16. 16.
    R. Tillner-Roth and H. D. Baehr, J. Chem. Thermodyn. 24:413 (1992); 25:277 (1991).CrossRefGoogle Scholar
  17. 17.
    L. A. Weber, Int. J. Thermophys. 10:617 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    M.-S. Zhu, Y.-D. Fu, and L.-Z. Han, Fluid Phase Equil. 80:149 (1992).CrossRefGoogle Scholar
  19. 19.
    H. D. Baehr and R. Tillner-Roth, J. Chem. Thermodyn. 23:1063 (1991).CrossRefGoogle Scholar
  20. 20.
    Y. Kabata, S. Tanikawa, M. Uematsu, and K. Watanabe, Int. J. Thermophys. 10:605 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    Y. Maezawa, H. Sato, and K. Watanabe, J. Chem. Eng. Data 35:225 (1990).CrossRefGoogle Scholar
  22. 22.
    G. Morrison and D. K. Ward, Fluid Phase Equil. 62:65 (1991).CrossRefGoogle Scholar
  23. 23.
    V. G. Niesen, L. J. Van Poolen, and S. L. Outcalt, Fluid Phase Equil. 97:81 (1994).CrossRefGoogle Scholar
  24. 24.
    A. R. H. Goodwm, D. R. Defibaugh, and L.A. Weber, Int. J. Thermophys. 13:837 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    H. Kubota, T. Yamashita, Y. Tanaka, and T. Makita, Int. J. Thermophys. 10:629 (1989).ADSCrossRefGoogle Scholar
  26. 26.
    J. W. Magee and J. B. Howley, Int. J. Refrig. 15:362 (1992).CrossRefGoogle Scholar
  27. 27.
    M.-S. Zhu, J. Wu, and Y.-D. Fu, Fluid Phase Equil. 80:99 (1992).CrossRefGoogle Scholar
  28. 28.
    A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 93:2741 (1990).ADSCrossRefGoogle Scholar
  29. 29.
    T. Hozumi, T. Koga, H. Sato, and K. Watanabe, Int. J. Thermophys. 14:739 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    M.-S. Zhu, L.-Z. Han, K.-Z. Zhang, and T. Y. Zhou, Int. J. Thermophys. 14:1039 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    H. J. R. Guedes and J. A. Zollweg, Int. J. Refrig. 15:381 (1992).CrossRefGoogle Scholar
  32. 32.
    R. Krauss, J. Luettmer-Strathmann, J. V. Sengers, and K. Stephan, Int. J. Thermophys. 14:951 (1993).ADSCrossRefGoogle Scholar
  33. 33.
    R. L. Rusby, J. Chem. Hermodyn. 23:1153 (1991).CrossRefGoogle Scholar
  34. 34.
    G. Morrison, M. O. McLinden, and M. L. Huber, Users’ Guide: NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixture Database, Version 3.0 (National Institute of Standards and Technology, Gaithersburg, MD, 1991).Google Scholar
  35. 35.
    S. Tang, G. X. Jin, and J. V. Sengers, Int. J. Thermophys. 12:515 (1991).ADSCrossRefGoogle Scholar
  36. 36.
    P. C. Albright, J. V. Sengers, J. F. Nicoll, and M. Ley-Koo, Int. J. Thermophys. 7:75 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1994

Authors and Affiliations

  • A. van Pelt
    • 1
  • G. X. Jin
    • 1
  • J. V. Sengers
    • 1
    • 2
  1. 1.Institute for Physical Science and TechnologyUniversity of MarylandCollege ParkUSA
  2. 2.Thermophysics DivisionNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations