Nano-Micro Letters

, Volume 2, Issue 4, pp 242–246 | Cite as

White Organic Light Emitting Devices Based on Multiple Emissive Nanolayers

  • M. V. Madhava Rao
  • Yan Kuin Su
  • T. S. Huang
  • Yi-Chun Chen
Open Access
Article

Abstract

In this paper, a white organic light-emitting device (WOLEDs) with multiple-emissive-layer structure has been fabricated. The device has a simple structure of indium tin oxide (ITO)/NPB (20 nm)//DPVBi(20 nm)/CDBP:xIr(btp)2acac(10 nm)/Alq3 (25 nm)/BCP (5 nm)/CsF (1 nm)/Al (150 nm) (x= 0.15, 2.5 and 3.0 wt%), where NPB and BCP are used as the hole-injecting layer, electron transporting and hole blocking layer, respectively. White light emission was realized in an OLED with 2.5% Ir(btp)2acac doping concentration. The device exhibits peak efficiency of 1.93 cd/A at 9 V and maximum brightness of 7005 cd/m2 at 14 V. The Commission International de I’Eclairage (CIE)(1931) coordinates of white emission are well within the white zone, which moves from (0.35,0.33) to (0.26,0.30) when the applied voltage is varied from 5 V to 14 V.

Keywords

Multilayer structure Organic light-emitting device White emission 

References

  1. 1.
    C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987). doi:10.1063/1.98799CrossRefGoogle Scholar
  2. 2.
    C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett. 55, 1489 (1989). doi:10.1063/1.101586CrossRefGoogle Scholar
  3. 3.
    X. Mo, T. Mizokuro, C. Heck, N. Tanigaki and T. Hiraga, Nano-Micro Lett. 1, 19 (2009).CrossRefGoogle Scholar
  4. 4.
    M. V. Madhava Rao, T. S. Huang, Y. Su, M. Tu, C. Huang and S. Wu, Nano-Micro Lett. 2, 49 (2010).CrossRefGoogle Scholar
  5. 5.
    M. V. Madhava Rao, Y. Su, T. S. Huang, M. Tu, S. Wu and C. Huang, J. Electrochem. Soc. 157, H 832 (2010).CrossRefGoogle Scholar
  6. 6.
    M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, Nature 395, 151 (1998). doi:10.1038/25954CrossRefGoogle Scholar
  7. 7.
    B. W. D’Andrade and S. R. Forrest, Adv. Mater. 16, 1585 (2004). doi:10.1002/adma.200400684CrossRefGoogle Scholar
  8. 8.
    R. S. Deshpande, V. Bulovic and S. R. Forrest, Appl. Phys. Lett. 75, 888 (1999). doi:10.1063/1.124250CrossRefGoogle Scholar
  9. 9.
    C. W. Tang, S. A. VanSlyke and C. H. Chen, J. Appl. Phys. 65, 3610 (1989). doi:10.1063/1.343409CrossRefGoogle Scholar
  10. 10.
    J. Shi and C. W. Tang, Appl. Phys. Lett. 70, 1665 (1997). doi:10.1063/1.118664CrossRefGoogle Scholar
  11. 11.
    C. H. Chuen and Y. T. Tao, Appl. Phys. Lett. 81, 4499 (2002). doi:10.1063/1.1528736CrossRefGoogle Scholar
  12. 12.
    S. Tokito and T. Iijima, Appl. Phys. Lett. 83, 2459 (2003). doi:10.1063/1.1611620CrossRefGoogle Scholar
  13. 13.
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund and W. R. Salaneck, Nature 397, 121 (1999). doi:10.1038/16393CrossRefGoogle Scholar
  14. 14.
    J. Kido and Y. Lizumi, Appl. Phys. Lett. 73, 2721 (1998). doi:10.1063/1.122570CrossRefGoogle Scholar
  15. 15.
    F. Steuber, J. Staudigel, M. Stössel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissörtel and J. Salbeck, Adv. Mater. 12, 130 (2000). doi:10.1002/(SICI)1521-4095(200001)12:2<130::AIDADMA130>3.0.CO;2-PCrossRefGoogle Scholar
  16. 16.
    M. Mazzeo, D. Pisignano, F. Della Sala, J. Thompson, R. I. R. Blyth, G. Gigli, R. Cingolani, G. Sotgiu and G. Barbarella, Appl. Phys. Lett. 82, 334 (2003). doi:10.1063/1.1531217CrossRefGoogle Scholar
  17. 17.
    F. Li, G. Cheng, Y. Zhao, J. Feng and S. Liu, Appl. Phys. Lett. 83, 4716 (2003). doi:10.1063/1.1632545CrossRefGoogle Scholar
  18. 18.
    G. W. Kang, Y. J. Ahn, J. T. Lim and C. H. Lee, Synth. Met. 137, 1029 (2003). doi:10.1016/S0379-6779(02)00889-5CrossRefGoogle Scholar
  19. 19.
    C. H. Kim and J. Shinar, Appl. Phys. Lett. 80, 2201 (2002). doi:10.1063/1.1464223CrossRefGoogle Scholar
  20. 20.
    T. Tsuji, S. Naka, H. Okada and H. Onnagawa, Appl. Phys. Lett. 81, 3329 (2002). doi:10.1063/1.1516629CrossRefGoogle Scholar
  21. 21.
    S. A. VanSlyke, C. H. Chen and C. W. Tang, Appl. Phys. Lett. 69, 2160 (1996). doi:10.1063/1.117151CrossRefGoogle Scholar
  22. 22.
    B. W. D’Andrage, J. Brooks, V. Adamovich, M. E. Thompson and S. R. Forrest, Adv. Mater. 14, 1031 (2002).Google Scholar
  23. 23.
    Y. S. Huang and J. H. Jou, Appl. Phys. Lett. 80, 2782 (2002). doi:10.1063/1.1413220CrossRefGoogle Scholar
  24. 24.
    Y. Z. Wang, R. G. Sun, F. Meghdadi, G. Leising and A. J. Epstei, Appl. Phys. Lett. 74, 3313 (1999).Google Scholar
  25. 25.
    C. H. Kim and J. Shinar, Appl. Phys. Lett. 80, 2201 (2002). doi:10.1063/1.1464223CrossRefGoogle Scholar
  26. 26.
    K. O. Cheon and J. Shinar, Appl. Phys. Lett. 81, 1738 (2002). doi:10.1063/1.1498500CrossRefGoogle Scholar
  27. 27.
    G. Lei, L. Wang and Y. Qiu, Appl. Phys. Lett. 88, 103508 (2006). doi:10.1063/1.2185255CrossRefGoogle Scholar
  28. 28.
    X. M. Yu, H. S. Kwok, W. Y. Wong and G. J. Zhou, Chem. Mater. 18, 5097 (2006). doi:10.1021/cm061030pCrossRefGoogle Scholar
  29. 29.
    Y. Shao and Y. Yang, Appl. Phys. Lett. 86, 073510 (2005). doi:10.1063/1.1866216CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  • M. V. Madhava Rao
    • 1
  • Yan Kuin Su
    • 1
  • T. S. Huang
    • 1
  • Yi-Chun Chen
    • 1
  1. 1.Institute of Microelectronics, Department of Electrical Engineering, and Advanced Optoelectronic Technology CenterNational Cheng Kung UniversityTainanTaiwan, ROC

Personalised recommendations