Advertisement

Nano-Micro Letters

, Volume 6, Issue 3, pp 258–267 | Cite as

Magnetic Fe3O4-Reduced Graphene Oxide Nanocomposites-Based Electrochemical Biosensing

  • Lili Yu
  • Hui Wu
  • Beina Wu
  • Ziyi Wang
  • Hongmei Cao
  • Congying Fu
  • Nengqin Jia
Open Access
Article

Abstract

An electrochemical biosensing platform was developed based on glucose oxidase (GOx)/Fe3O4- reduced graphene oxide (Fe3O4-RGO) nanosheets loaded on the magnetic glassy carbon electrode (MGCE). With the advantages of the magnetism, conductivity and biocompatibility of the Fe3O4-RGO nanosheets, the nanocomposites could be facilely adhered to the electrode surface by magnetically controllable assembling and beneficial to achieve the direct redox reactions and electrocatalytic behaviors of GOx immobilized into the nanocomposites. The biosensor exhibited good electrocatalytic activity, high sensitivity and stability. The current response is linear over glucose concentration ranging from 0.05 to 1.5 mM with a low detection limit of 0.15 μM. Meanwhile, validation of the applicability of the biosensor was carried out by determining glucose in serum samples. The proposed protocol is simple, inexpensive and convenient, which shows great potential in biosensing application.

Keywords

Fe3O4-reduced graphene oxide (Fe3O4-RGO) Nanocomposites Magnetically controllable assembling Direct electron transfer Biosensor 

References

  1. [1]
    S. P. Nichols, A. Koh, W. L. Storm, J. H. Shin and M. H. Schoenfisch, “Biocompatible materials for continuous glucose monitoring devices”, Chem. Soc. Rev. 113(4), 2528–2549 (2013). http://dx.doi.org/10.1021/cr300387jCrossRefGoogle Scholar
  2. [2]
    C. Qiu, X. Wang, X. Liu, S. Hou and H. Ma, “Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor”, Electrochim. Acta 67, 140–146 (2012). http://dx.doi.org/10.1016/j.electacta.2012.02.011CrossRefGoogle Scholar
  3. [3]
    C. He, J. Liu, Q. Zhang and C. Wu, “A novel stable amperometric glucose biosensor based on the adsorption of glucose oxidase on poly(methyl methacrylate)- bovine serum albumin core-shell nanoparticles”, Sensor. Actuat. B: Chem. 166–167, 802-808 (2012). http://dx.doi.org/10.1016/j.snb.2012.03.081Google Scholar
  4. [4]
    C. Fu, W. Yang, X. Chen and D. G. Evans, “Direct electrochemistry of glucose oxidase on a graphite nanosheet-Nafion composite film modified electrode”, Electrochem. Commun. 11(5), 997–1000 (2009). http://dx.doi.org/10.1016/j.elecom. 2009.02.042CrossRefGoogle Scholar
  5. [5]
    X. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. Lin, “Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing”, Biosens. Bioelectron. 25(4), 901–905 (2009). http://dx.doi.org/10.1016/j.bios.2009.09.004CrossRefGoogle Scholar
  6. [6]
    S. Liu and H. Ju, “Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode”, Biosens. Bioelectron. 19(3), 177–183 (2003). http://dx.doi.org/10.1016/S0956-5663(03)00172-6CrossRefGoogle Scholar
  7. [7]
    Y. Song, K. Qu, C. Zhao, J. Ren and X. Qu, “Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection”, Adv. Mater. 22(19), 2206–2210 (2010). http://dx.doi.org/10.1002/adma.200903783CrossRefGoogle Scholar
  8. [8]
    S. Su, Y. He, S. Song, D. Li, L. Wang, C. Fan and S. T. Lee, “A silicon nanowire-based electrochemical glucose biosensor with high electrocatalytic activity and sensitivity”, Nanoscale 2(9), 1704–1707 (2010). http://dx.doi.org/10.1039/C0NR00314JCrossRefGoogle Scholar
  9. [9]
    S. A. Ansari and Q. Husain, “Potential applications of enzymes immobilized on/in nano materials: a review”, Biotechnol. Adv. 30(3), 512–523 (2012). http://dx.doi.org/10.1016/j.biotechadv.2011.09.005CrossRefGoogle Scholar
  10. [10]
    J. D. Qiu, H. P. Peng R. P. Liang and X. H. Xia, “Facile preparation of magnetic core-shell Fe3O4@Au nanoparticle/myoglobin biofilm for direct electrochemistry”, Biosens. Bioelectron. 25(6), 1447–1453 (2010). http://dx.doi.org/10.1016/j.bios.2009.10.043CrossRefGoogle Scholar
  11. [11]
    H. P. Peng, R. P. Liang and J. D. Qiu, “Facile synthesis of Fe3O4@Al2O3 core-shell nanoparticles and their application to the highly specific capture of heme proteins for direct electrochemistry”, Biosens. Bioelectron. 26(6), 3005–3011 (2011). http://dx.doi.org/10.1016/j.bios.2010.12.003CrossRefGoogle Scholar
  12. [12]
    H. P. Peng, R. P. Liang, L. Zhang and J. D. Qiu, “Sonochemical synthesis of magnetic coreshell Fe3O4@ZrO2 nanoparticles and their application to the highly effective immobilization of myoglobin for direct electrochemistry”, Electrochim. Acta 56(11), 4231–4236 (2011). http://dx.doi.org/10.1016/j.electacta.2011.01.090CrossRefGoogle Scholar
  13. [13]
    C. Zou, Y. Fu, Q. Xie and S. Yao, “Highperformance glucose amperometric biosensor based on magnetic polymeric bionanocomposites”, Biosens. Bioelectron. 25(6), 1277–1282 (2010). http://dx.doi.org/10.1016/j.bios.2009.10.014CrossRefGoogle Scholar
  14. [14]
    S. Wu, H. Wang, S. Tao, C. Wang, L. Zhang, Z. Liu and C. Meng, “Magnetic loading of tyrosinase-Fe3O4/mesoporous silica core/shell microspheres for high sensitive electrochemical biosensing”, Anal. Chem. Acta 686(1–2), 81–86 (2011). http://dx.doi.org/10.1016/j.aca.2010.11.053CrossRefGoogle Scholar
  15. [15]
    D. Chen H. Feng and J. Li, “Graphene oxide: preparation, functionalization, and electrochemical applications”, Chem. Rev. 112(11), 6027–6053 (2012). http://dx.doi.org/10.1021/cr300115gCrossRefGoogle Scholar
  16. [16]
    I. V. Lightcap T. H. Kosel and P. V. Kamat, “Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. storing and shuttling electrons with reduced graphene oxide”, Nano Lett. 10(2), 577–583 (2010). http://dx.doi.org/10.1021/nl9035109CrossRefGoogle Scholar
  17. [17]
    Q. Chang, K. Deng, L. Zhu, G. Jiang, C. Yu and H. Tang, “Determination of hydrogen peroxide with the aid of peroxidase-like Fe3O4 magnetic nanoparticles as the catalyst”, Microchim. Acta 165(3–4), 299–305 (2009). http://dx.doi.org/10.1007/s00604-008-0133-zCrossRefGoogle Scholar
  18. [18]
    Y. Cheng, Y. Liu, J. Huang, K. Li, Y. Xian, W. Zhang and L. Jin, “Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms”, Electrochim. Acta 54(9), 2588–2594 (2009). http://dx.doi.org/10.1016/j.electacta.2008.10.072CrossRefGoogle Scholar
  19. [19]
    G. Gao, H. Wu, Y. Zhang, K. Wang, P. Huang, X. Zhang, S. Guo and D. Cui, “One-step synthesis of Fe3O4@C nanotubes for the immobilization of adriamycin”, J. Mater. Chem. 21(33), 12224–12227 (2011). http://dx.doi.org/10.1039/C1JM12535DCrossRefGoogle Scholar
  20. [20]
    W. Fan, W. Gao, C. Zhang, W. W. Tjiu, J. Pan and T. Liu, “Hybridization of graphene sheets and carbon-coated Fe3O4 nanoparticles as a synergistic adsorbent of organic dyes”, J. Mater. Chem. 22(48), 25108–25115 (2012). http://dx.doi.org/10.1039/C2JM35609KCrossRefGoogle Scholar
  21. [21]
    J. Liang, Y. Xu, D. Sui, L. Zhang, Y. Huang, Y. Ma, F. Li and Y. Chen, “Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches”, J. Phys. Chem. C 114(41), 17465–17471 (2010). http://dx.doi.org/10.1021/jp105629rCrossRefGoogle Scholar
  22. [22]
    Y. Wang, H. Zhang, D. Yao, J. Pu, Y. Zhang, X. Gao and Y. Sun, “Direct electrochemistry of hemoglobin on graphene/Fe3O4 nanocomposite-modified glass carbon electrode and its sensitive detection for hydrogen peroxide”, J. Solid. State. Electr. 17(3), 881–887 (2013). http://dx.doi.org/10.1007/s10008-012-1939-5CrossRefGoogle Scholar
  23. [23]
    M. Chen, Y. N. Kim, C. Li and S. O. Cho, “Preparation and characterization of magnetic nanoparticles and their silica egg-yolk-like nanostructures: a prospective multifunctional nanostructure platform”, J. Phys. Chem. C 112(17), 6710–6716 (2008). http://dx.doi.org/10.1021/jp710775jCrossRefGoogle Scholar
  24. [24]
    H. Wu, G. Liu, Y. Zhuang, D. Wu, H. Zhang, H. Yang, H. Hu and S. Yang, “The behavior after intravenous injection in mice of multiwalled carbon nanotube/Fe3O4 hybridMRI contrast agents”, Biomaterials 32(21), 4867–4876 (2011). http://dx.doi.org/10.1016/j.biomaterials.2011.03.024CrossRefGoogle Scholar
  25. [25]
    D. P. Yang, X. Wang, X. Guo, X. Zhi, K. Wang, C. Li, G. Huang, G. Shen, Y. Mei and D. Cui, “UV/O3 generated graphene nanomesh: formation mechanism, properties, and FET studies”, J. Phys. Chem. C 118(1), 725–731 (2013). http://dx.doi.org/10.1021/jp409898dCrossRefGoogle Scholar
  26. [26]
    Y. Zhang, C. Wu, S. Guo and J. Zhang, “Interactions of graphene and graphene oxide with proteins and peptides”, Nanotechnol. Rev. 2(1), 27–45 (2013). http://dx.doi.org/10.1515/ntrev-2012-0078Google Scholar
  27. [27]
    G. Zhao, J. J. Feng, J. J. Xu and H. Y. Chen, “Direct electrochemistry and electrocatalysis of heme proteins immobilized on self-assembled ZrO2 film”, Electrochem. Commun. 7(7), 724–729 (2005). http://dx.doi.org/10.1016/j.elecom.2005.04.026CrossRefGoogle Scholar
  28. [28]
    I. K. Moon, J. Lee, R. S. Ruoff and H. Lee, “Reduced graphene oxide by chemical graphitization”, Nat. Commun. 1, 73–78 (2010). http://dx.doi.org/10.1038/ncomms1067CrossRefGoogle Scholar
  29. [29]
    H. He and C. Gao, “Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles”, ACS Appl. Mater. Interfaces 2(11), 3201–3210 (2010). http://dx.doi.org/10.1021/am100673gCrossRefGoogle Scholar
  30. [30]
    S. Z. Zhao, K. Zhang, Y. Bai, W. Yang and C. Sun, “Glucose oxidase/colloidal gold nanoparticles immobilized in Nafion film on glassy carbon electrode: direct electron transfer and electrocatalysis”, Bioelectrochemistry 69(2), 158–163 (2006). http://dx.doi.org/10.1016/j.bioelechem.2006.01.001CrossRefGoogle Scholar
  31. [31]
    C. Hu, D. P. Yang, Z. Wang, L. Yu, J. Zhang and N. Jia, “Improved EIS performance of an electrochemical cytosensor using three-dimensional architecture Au@BSA as sensing layer”, Anal. Chem. 85(10), 5200–5206 (2013). http://dx.doi.org/10.1021/ac400556qCrossRefGoogle Scholar
  32. [32]
    B. Unnikrishnan, S. Palanisamy and S. M. Chen, “A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite”, Biosens. Bioelectron. 39(1), 70–75 (2013). http://dx.doi.org/10.1016/j.bios.2012.06.045CrossRefGoogle Scholar
  33. [33]
    C. Shan, H. Yang, J. Song, D. Han, A. Ivaska and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”, Anal. Chem. 81(6), 2378–2382 (2009). http://dx.doi.org/10.1021/ac802193cCrossRefGoogle Scholar
  34. [34]
    E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems”, J. Electroanal. Chem. Interfacial Electrochem. 101(1), 19–28 (1979). http://dx.doi.org/10.1016/S0022-0728(79)80075-3CrossRefGoogle Scholar
  35. [35]
    X. Xiao, B. Zhou, L. Zhu, L. Xu, L. Tan, H. Tang, Y. Zhang, Q. Xie and S. Yao, “An reagentless glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on poly(methylene blue) doped silica nanocomposites”, Sensor. Actuat. B: Chem. 165(1), 126–132 (2012). http://dx.doi.org/10.1016/j.snb.2012.02.029CrossRefGoogle Scholar
  36. [36]
    K. Wang, H. Yang, L. Zhu, Z. Ma, S. Xing, Q. Lv, J. Liao, C. Liu and W. Xing, “Direct electron transfer and electrocatalysis of glucose oxidase immobilized on glassy carbon electrode modified with Nafion and mesoporous carbon FDU-15”, Electrochim. Acta 54(20), 4626–4630 (2009). http://dx.doi.org/10.1016/j.electacta.2009.02.097CrossRefGoogle Scholar
  37. [37]
    P. Wu, Q. Shao, Y. Hu, J. Jin, Y. Yin, H. Zhang and C. Cai, “Direct electrochemistry of glucose oxidase assembled on graphene and application to glucose detection”, Electrochim. Acta 55(28), 8606–8614 (2010). http://dx.doi.org/10.1016/j.electacta.2010.07.079CrossRefGoogle Scholar
  38. [38]
    N. Q. Dung, D. Patil, T. T. Duong, H. Jung, D. Kim and S. G. Yoon, “An amperometric glucose biosensor based on a GOx-entrapped TiO2-SWCNT composite”, Sensor. Actuat. B: Chem. 166–167(0), 103–109 (2012). http://dx.doi.org/10.1016/j.snb.2012.01.008CrossRefGoogle Scholar
  39. [39]
    J. Yu, S. Liu and H. Ju, “Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane”, Biosens. Bioelectron. 19(4), 401–409 (2003). http://dx.doi.org/10.1016/S0956-5663(03)00199-4CrossRefGoogle Scholar
  40. [40]
    D. L. Scott and E. F. Bowden, “Enzyme-substrate kinetics of adsorbed cytochrome c peroxidase on pyrolytic graphite electrodes”, Anal. Chem. 66(8), 1217–1223 (1994). http://dx.doi.org/10.1021/ac00080a004CrossRefGoogle Scholar
  41. [41]
    S. Deng, G. Jian, J. Lei, Z. Hu and H. Ju, “A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes”, Biosens. Bioelectron. 25(2), 373–377 (2009). http://dx.doi.org/10.1016/j.bios.2009.07.016CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2014

Authors and Affiliations

  • Lili Yu
    • 1
  • Hui Wu
    • 1
  • Beina Wu
    • 1
  • Ziyi Wang
    • 1
  • Hongmei Cao
    • 1
  • Congying Fu
    • 1
  • Nengqin Jia
    • 1
  1. 1.The Education Ministry Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Department of Chemistry, College of Life and Environmental SciencesShanghai Normal UniversityShanghaiChina

Personalised recommendations