Nano-Micro Letters

, Volume 6, Issue 3, pp 209–226 | Cite as

Research Progress in Improving the Rate Performance of LiFePO4 Cathode Materials

  • Sixu Deng
  • Hao Wang
  • Hao Liu
  • Jingbing Liu
  • Hui Yan
Open Access


Olivine lithium iron phosphate (LiFePO4) is considered as a promising cathode material for high power-density lithium ion battery due to its high capacity, long cycle life, environmental friendly, low cost, and safety consideration. The theoretical capacity of LiFePO4 based on one electron reaction is 170 mAh g−1 at the stable voltage plateau of 3.5 V vs. Li/Li+. However, the instinct drawbacks of olivine structure induce a poor rate performance, resulting from the low lithium ion diffusion rate and low electronic conductivity. In this review, we summarize the methods for enhancing the rate performance of LiFePO4 cathode materials, including carbon coating, elements doping, preparation of nanosized materials, porous materials and composites, etc. Meanwhile, the advantages and disadvantages of above methods are also discussed.


LiFePO4 Lithium ion battery Rate performance 


  1. [1]
    Y. Wang and G. Cao, “Developments in nanostructured cathode materials for high-performance lithium-ion batteries”, Adv. Mater. 20(12), 2251–2269 (2008). Scholar
  2. [2]
    G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim and H.-J. Sohn, “Prospective materials and applications for Li secondary batteries”, Energ. Environ. Sci. 4(6), 1986–2002 (2011). Scholar
  3. [3]
    J. Wang and X. Sun, “Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries”, Energ. Environ. Sci. 5(1), 5163–5185 (2012). Scholar
  4. [4]
    A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries”, J. Electrochem. Soc. 144(4), 1188–1194 (1997). Scholar
  5. [5]
    A. Ritchie and W. Howard, “Recent developments and likely advances in lithium-ion batteries”, J. Power Sources 162(2), 809–812 (2006). Scholar
  6. [6]
    T. Ohzuku and R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries”, J. Power Sources 174(2), 449–456 (2007). Scholar
  7. [7]
    D. Jugović and D. Uskoković, “A review of recent developments in the synthesis procedures of lithium iron phosphate powders”, J. Power Sources 190(2), 538–544 (2009). Scholar
  8. [8]
    K. Tang, J. Sun, X. Yu, H. Li and X. Huang, “Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity”, Electrochim. Acta. 54(26), 6565–6569 (2009). Scholar
  9. [9]
    Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv and G. Y. Li, “Advances in new cathode material LiFePO4 for lithium-ion batteries”, Synthetic Met. 162(13–14), 1315–1326 (2012). Scholar
  10. [10]
    S. Y. Chung, J. T. Bloking and Y. M. Chiang, “Electronically conductive phospho-olivines as lithium storage electrodes”, Nat. Mater. 1(2), 123–8 (2002). Scholar
  11. [11]
    J. Molenda, A. Stoklosa and T. Baok, “Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties”, Solid State Ionics 36(1–2), 53–58 (1989). Scholar
  12. [12]
    Y. Shimakawa, T. Numata and J. Tabuchi, “Verwey-type transition and magnetic properties of the LiMn2O4 spinels”, J. Solid State Chem. 131(1), 138–143 (1997). Scholar
  13. [13]
    H. C. Dinh, S. I. Mho and I. H. Yeo, “Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology”, Electroanal. 23(9), 2079–2086 (2011). Scholar
  14. [14]
    H. Fang, Z. Pan, L. Li, Y. Yang, G. Yan, G. Li and S. Wei, “The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity”, Electrochem. Commun. 10(7), 1071–1073 (2008). Scholar
  15. [15]
    L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang and J. B. Goodenough, “Development and challenges of LiFePO4 cathode material for lithium-ion batteries”, Energ. Environ. Sci. 4(2), 269 (2011). Scholar
  16. [16]
    M. S. Islam, D. J. Driscoll, C. A. J. Fisher and P. R. Slater, “Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material”, Chem. Mater. 17(20), 5085–5092 (2005). Scholar
  17. [17]
    J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414(6861), 359–367 (2001). Scholar
  18. [18]
    Y. Wang, J. Wang, J. Yang and Y. Nuli, “High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O”, Adv. Funct. Mater. 16(16), 2135–2140 (2006). Scholar
  19. [19]
    K. Hanai, T. Maruyama, N. Imanishi, A. Hirano, Y. Takeda and O. Yamamoto, “Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO4/carbon composite cathode”, J. Power Sources 178(2), 789–794 (2008). Scholar
  20. [20]
    M. M. Doeff, J. D. Wilcox, R. Kostecki and G. Lau, “Optimization of carbon coatings on LiFePO4”, J. Power Sources 163(1), 180–184 (2006). Scholar
  21. [21]
    Y. Kadoma, J.-M. Kim, K. Abiko, K. Ohtsuki, K. Ui and N. Kumagai, “Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose”, Electrochim. Acta 55(3), 1034–1041 (2010). Scholar
  22. [22]
    S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro and N. Kumagai, “Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material”, Electrochim. Acta 49(24), 4213–4222 (2004). Scholar
  23. [23]
    M. R. Yang, T. H. Teng and S. H. Wu, “LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, J. Power Sources 159(1), 307–311 (2006). Scholar
  24. [24]
    M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya and J. R. Matos, “Synthesis and characterization of LiFePO4 prepared by sol—gel technique”, Solid State Ionics 177(5–6), 497–500 (2006). Scholar
  25. [25]
    Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu and H. G. Pan, “Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C”, J. Power Sources 184(2), 444–448 (2008). Scholar
  26. [26]
    K. Wang, R. Cai, T. Yuan, X. Yu, R. Ran and Z. Shao, “Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source”, Electrochim. Acta 54(10), 2861–2868 (2009). Scholar
  27. [27]
    S. A. Needham, A. Calka, G. X. Wang, A. Mosbah and H. K. Liu, “A new rapid synthesis technique for electrochemically active materials used in energy storage applications”, Electrochem. Commun. 8(3), 434–438 (2006). Scholar
  28. [28]
    L. Wang, G. C. Liang, X. Q. Ou, X. K. Zhi, J. P. Zhang and J. Y. Cui, “Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction”, J. Power Sources 189(1), 423–428 (2009). Scholar
  29. [29]
    S. H. Ju and Y. C. Kang, “LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black”, Mater. Chem. Phys. 107(2–3), 328–333 (2008). Scholar
  30. [30]
    Y. H. Nien, J. R. Carey and J. S. Chen, “Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors”, J. Power Sources 193(2), 822–827 (2009). Scholar
  31. [31]
    Y. D. Cho, G. T. K. Fey and H. M. Kao, “The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes”, J. Power Sources 189(1), 256–262 (2009). Scholar
  32. [32]
    R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, “Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites”, J. Electrochem. Soc. 152(3), A607–A610 (2005). Scholar
  33. [33]
    H. Huang, S. C. Yin and L. F. Nazar, “Approaching theoretical capacity of LiFePO4 at room temperature at high rates”, Electrochem. Solid ST. 4(10), A170–A172 (2001). Scholar
  34. [34]
    B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong and Z. Jiao, “Morphology and electrical properties of carbon coated LiFePO4 cathode materials”, J. Power Sources 189(1), 462–466 (2009). Scholar
  35. [35]
    Y. Wang, Y. Wang, E. Hosono, K. Wang and H. Zhou, “The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method”, Angew. Chem. Int. Ed. Engl. 47(39), 7461–5 (2008). Scholar
  36. [36]
    Z. Chen and J. R. Dahn, “Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density”, J. Electrochem. Soc. 149(9), A1184–A1189 (2002). Scholar
  37. [37]
    D. Zhang, X. Yu, Y. Wang, R. Cai, Z. Shao, X.-Z. Liao and Z.-F. Ma, “Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor”, J. Electrochem. Soc. 156(10), A802–A808 (2009). Scholar
  38. [38]
    A. V. Murugan, T. Muraliganth and A. Manthiram, “Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries”, J. Phys. Chem. C 112(37), 14665–14671 (2008). Scholar
  39. [39]
    A. Vadivel Murugan, T. Muraliganth and A. Manthiram, “One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M=Mn, Fe, and Co) cathodes”, J. Electrochem. Soc. 156(2), A79–A83 (2009). Scholar
  40. [40]
    C. R. Sides, F. Croce, V. Y. Young, C. R. Martin and B. Scrosati, “A high-rate, nanocomposite LiFePO4/carbon cathode”, Electrochem. Solid ST. 8(9), A484 (2005). Scholar
  41. [41]
    S. T. Yang, N. H. Zhao, H. Y. Dong, J. X. Yang and H. Y. Yue, “Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon”, Electrochim. Acta. 51(1), 166–171 (2005). Scholar
  42. [42]
    H. Liu, Y. Feng, Z. Wang, K. Wang and J. Xie, “A PVB-based rheological phase approach to nano-LiFePO4/C composite cathodes”, Powder Technol. 184(3), 313–317 (2008). Scholar
  43. [43]
    A. F. Liu, Z. H. Hu, Z. B. Wen, L. Lei and J. An, “LiFePO4/C with high capacity synthesized by carbothermal reduction method”, Ionics 16(4), 311–316 (2009). Scholar
  44. [44]
    H. Xie and Z. Zhou, “Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery”, Electrochim. Acta 51(10), 2063–2067 (2006). Scholar
  45. [45]
    J. Xu and G. Chen, “Effects of doping on the electronic properties of LiFePO4: A first-principles investigation”, Physica B: Condens. Matter 405(3), 803–807 (2010). Scholar
  46. [46]
    G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou and J. H. Ahn, “Physical and electrochemical properties of doped lithium iron phosphate electrodes”, Electrochim. Acta. 50(2–3), 443–447 (2004). Scholar
  47. [47]
    T. H. Teng, M. R. Yang, S. h. Wu and Y. P. Chiang, “Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, Solid State Commun. 142(7), 389–392 (2007). Scholar
  48. [48]
    X. Z. Liao, Y. S. He, Z. F. Ma, X. M. Zhang and L. Wang, “Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials”, J. Power Sources 174(2), 720–725 (2007). Scholar
  49. [49]
    P. S. Herle, B. Ellis, N. Coombs and L. F. Nazar, “Nano-network electronic conduction in iron and nickel olivine phosphates”, Nat. Mater. 3(3), 147–152 (2004). Scholar
  50. [50]
    C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche and C. Masquelier, “Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites”, Solid State Ionics 177(3–4), 333–341 (2006). Scholar
  51. [51]
    C. Ouyang, S. Shi, Z. Wang, X. Huang and L. Chen, “First-principles study of Li ion diffusion in LiFePO4”, Phys. Rev. B 69(10), 104303 (2004).Google Scholar
  52. [52]
    M. Abbate, S. M. Lala, L. A. Montoro and J. M. Rosolen, “Ti-, Al-, and Cu-doping induced gap states in LiFePO4”, Electrochem. Solid ST. 8(6), A288–A290 (2005). Scholar
  53. [53]
    P. P. Prosini, D. Zane and M. Pasquali, “Improved electrochemical performance of a LiFePO4-based composite cathode”, Electrochim. Acta. 46(23), 3517–3523 (2001). Scholar
  54. [54]
    D. Wang, H. Li, S. Shi, X. Huang and L. Chen, “Improving the rate performance of LiFePO4 by Fe-site doping”, Electrochim. Acta. 50(14), 2955–2958 (2005). Scholar
  55. [55]
    H. C. Shin, S. B. Park, H. Jang, K. Y. Chung, W. I. Cho, C. S. Kim and B. W. Cho, “Rate performance and structural change of Cr-doped LiFePO4/C during cycling”, Electrochim. Acta. 53(27), 7946–7951 (2008). Scholar
  56. [56]
    C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian and J. Yan, “Improved high-rate charge/discharge performances of LiFePO4/C via V-doping”, J. Power Sources 193(2), 841–845 (2009). Scholar
  57. [57]
    L. Yang, L. Jiao, Y. Miao and H. Yuan, “Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping”, J. Solid State Electr. 13(10), 1541–1544 (2008). Scholar
  58. [58]
    F. Lu, Y. Zhou, J. Liu and Y. Pan, “Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route”, Electrochim. Acta 56(24), 8833–8838 (2011). Scholar
  59. [59]
    C. S. Sun, Y. Zhang, X. J. Zhang and Z. Zhou, “Structural and electrochemical properties of Cl-doped LiFePO4/C”, J. Power Sources 195(11), 3680–3683 (2010). Scholar
  60. [60]
    Z.-H. Wang, L.-X. Yuan, M. Wu, D. Sun and Y.-H. Huang, “Effects of Na+ and Cl- co-doping on electrochemical performance in LiFePO4/C”, Electrochim. Acta 56(24), 8477–8483 (2011). Scholar
  61. [61]
    Y. Lu, J. Shi, Z. Guo, Q. Tong, W. Huang and B. Li, “Synthesis of LiFe1–xNixPO4/C composites and their electrochemical performance”, J. Power Sources 194(2), 786–793 (2009). Scholar
  62. [62]
    S. Beninati, L. Damen and M. Mastragostino, “Fast sol—gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application”, J. Power Sources. 194(2), 1094–1098 (2009). Scholar
  63. [63]
    K. T. Lee, W. H. Kan and L. F. Nazar, “Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn)”, J. Am. Chem. Soc. 131(17), 6044–6045 (2009). Scholar
  64. [64]
    M. Gaberscek, R. Dominko and J. Jamnik, “Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes”, Electrochem. Commun. 9(12), 2778–2783 (2007). Scholar
  65. [65]
    C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier, “Size effects on carbon-free LiFePO4 powders”, Electrochem. Solid ST. 9(7), A352–A355 (2006). Scholar
  66. [66]
    P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon and C. Masquelier, “Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4”, Nat. Mater. 7(9), 741–747 (2008). Scholar
  67. [67]
    S. Lim, C. S. Yoon and J. Cho, “Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries”, Chem. Mater. 20(14), 4560–4564 (2008). Scholar
  68. [68]
    G. Qin, Q. Wu, J. Zhao, Q. Ma and C. Wang, “C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries”, J. Power Sources 248(15), 588–595 (2014). Scholar
  69. [69]
    H. Deng, S. Jin, L. Zhan, W. Qiao and L. Ling, “Nest-like LiFePO4/C architectures for high performance lithium ion batteries”, Electrochim. Acta 78(1), 633–637 (2012). Scholar
  70. [70]
    G. Qin, S. Xue, Q. Ma and C. Wang, “The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries”, CrystEngComm. 16(2), 260 (2014). Scholar
  71. [71]
    K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari and J. J. Vittal, “Storage performance of LiFePO4 nanoplates”, J. Mater. Chem. 19(5), 605–610 (2009). Scholar
  72. [72]
    M. H. Lee, J. Y. Kim and H. K. Song, “A hollow sphere secondary structure of LiFePO4 nanoparticles”, Chem. Commun. (Camb). 46(36), 6795–6797 (2010). Scholar
  73. [73]
    Y. S. Hu, Y. G. Guo, R. Dominko, M. Gaberscek, J. Jamnik and J. Maier, “Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect”, Adv. Mater. 19(15), 1963–1966 (2007). Scholar
  74. [74]
    R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik and J. Jamnik, “Porous olivine composites synthesized by sol—gel technique”, J. Power Sources 153(2), 274–280 (2006). Scholar
  75. [75]
    F. Yu, J. Zhang, Y. Yang and G. Song, “Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method”, J. Power Sources 189(1), 794–797 (2009). Scholar
  76. [76]
    G. Qin, Q. Ma and C. Wang, “A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for lithium ion batteries”, Electrochim. Acta 115(1), 407–415 (2014). Scholar
  77. [77]
    R. Dominko, M. Bele, J.-M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon and J. Jamnik, “Wired porous cathode materials: A novel concept for synthesis of LiFePO4”, Chem. Mater. 19(12), 2960–2969 (2007). Scholar
  78. [78]
    R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858–A863 (2005). Scholar
  79. [79]
    C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm and C. J. Drummond, “Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries”, Chem. Mater. 21(21), 5300–5306 (2009). Scholar
  80. [80]
    C. M. Doherty, R. A. Caruso, B. M. Smarsly and C. J. Drummond, “Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries”, Chem. Mater. 21(13), 2895–2903 (2009). Scholar
  81. [81]
    N. N. Sinha, C. Shivakumara and N. Munichandraiah, “High rate capability of a dual-porosity LiFePO4/C composite”, ACS Appl. Mater. Inter. 2(7), 2031–2038 (2010). Scholar
  82. [82]
    F. Yu, J. Zhang, Y. Yang and G. Song, “Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol—gel-spray drying method”, J. Power Sources 195(19), 6873–6878 (2010). Scholar
  83. [83]
    J. Qian, M. Zhou, Y. Cao, X. Ai and H. Yang, “Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries”, J. Phys. Chem. C 114(8), 3477–3482 (2010). Scholar
  84. [84]
    M. Xie, X. Zhang, J. Laakso, H. Wang and E. Lev鋘en, “New method of postmodifying the particle size and morphology of LiFePO4 via supercritical carbon dioxide”, Cryst. Growth Des. 12(5), 2166–2168 (2012). Scholar
  85. [85]
    M. Xie, X. Zhang, S. Deng, Y. Wang, H. Wang, J. Liu, H. Yan, J. Laakso and E. Lev鋘en, “The effects of supercritical carbon dioxide treatment on the morphology and electrochemical performance of LiFePO4 cathode materials”, RSC Adv. 3(31), 12786–12793 (2013). Scholar
  86. [86]
    M. Xie, X. Zhang, Y. Wang, S. Deng, H. Wang, J. Liu, H. Yan, J. Laakso and E. Levänen, “A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide”, Electrochim. Acta 94(1), 16–20 (2013). Scholar
  87. [87]
    M. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel and J. Jamnik, “Porous, carbon-decorated LiFePO4 prepared by sol—gel method based on citric acid”, Solid State Ionics 176(19–22), 1801–1805 (2005). Scholar
  88. [88]
    R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858-A863 (2005).
  89. [89]
    A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, Carbon 39(4), 507–514 (2001). Scholar
  90. [90]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306(5696), 666–669 (2004). Scholar
  91. [91]
    A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6(3), 183–191 (2007). Scholar
  92. [92]
    Z.-L. Wang, D. Xu, H.-G. Wang, Z. Wu and X.-B. Zhang, “In situ fabrication of porous graphene electrodes for high-performance energy storage”, ACS Nano 7(3), 2422–2430 (2013). Scholar
  93. [93]
    L. P. Biro, P. Nemes-Incze and P. Lambin, “Graphene: nanoscale processing and recent applications”, Nanoscale 4(6), 1824–1839 (2012). Scholar
  94. [94]
    O. A. Vargas C, A. Caballero and J. Morales, “Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?”, Nanoscale 4(6), 2083–2092 (2012). Scholar
  95. [95]
    F. Y. Su, Y. B. He, B. Li, X. C. Chen, C. H. You, W. Wei, W. Lv, Q. H. Yang and F. Kang, “Could graphene construct an effective conducting network in a high-power lithium ion battery?”, Nano Energy 1(3), 429–439 (2012). Scholar
  96. [96]
    F. Y. Su, C. You, Y. B. He, W. Lv, W. Cui, F. Jin, B. Li, Q. H. Yang and F. Kang, “Flexible and planar graphene conductive additives for lithium-ion batteries”, J. Mater. Chem. 20(43), 9644–9650 (2010). Scholar
  97. [97]
    X. Zhou, F. Wang, Y. Zhu and Z. Liu, “Graphene modified LiFePO4 cathode materials for high power lithium ion batteries”, J. Mater. Chem. 21(10), 3353–3358 (2011). Scholar
  98. [98]
    C. Su, X. Bu, L. Xu, J. Liu and C. Zhang, “A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries”, Electrochim. Acta. 64(1), 190–195 (2012). Scholar
  99. [99]
    J. Popovic, R. Demir-Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlögl, M. Antonietti and M. M. Titirici, “LiFePO4 mesocrystals for lithium-ion batteries”, Small 7(8), 1127–1135 (2011). Scholar
  100. [100]
    J. Ha, S. K. Park, S. H. Yu, A. Jin, B. Jang, S. Bong, I. Kim, Y. E. Sung and Y. Piao, “A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries”, Nanoscale 5(18), 8647–55 (2013). Scholar
  101. [101]
    Y. Shi, S.-L. Chou, J.-Z. Wang, D. Wexler, H.-J. Li, H.-K. Liu and Y. Wu, “Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability”, J. Mater. Chem. 22(32), 16465–16470 (2012). Scholar
  102. [102]
    H. Wang, J. T. Robinson, G. Diankov and H. Dai, “Nanocrystal growth on graphene with various degrees of oxidation”, J. Am. Chem. Soc. 132(10), 3270–3271 (2010). Scholar
  103. [103]
    Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-based supercapacitors produced by activation of graphene”, Science 332(6037), 1537–41 (2011). Scholar
  104. [104]
    J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Gauthier, R. Li and X. Sun, “3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries”, J. Power Sources 208(15), 340–344(2012). Scholar
  105. [105]
    J. Yang, J. Wang, Y. Tang, D. Wang, X. Li, Y. Hu, R. Li, G. Liang, T.-K. Sham and X. Sun, “LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene”, Energ. Environ. Sci. 6(5), 1521–1528 (2013). Scholar
  106. [106]
    R. H. Baughman, A. A. Zakhidov and W. A. de Heer, “Carbon nanotubes—the route toward applications”, Science 297(5582), 787–792 (2002). Scholar
  107. [107]
    T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature 382(6586), 54–56 (1996). Scholar
  108. [108]
    J. Yang, J. Wang, X. Li, D. Wang, J. Liu, G. Liang, M. Gauthier, Y. Li, D. Geng, R. Li and X. Sun, “Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries”, J. Mater. Chem. 22(15), 7537–7543 (2012). Scholar
  109. [109]
    H. Liu, Y. Zhang, R. Li, X. Sun, S. Désilets, H. Abou-Rachid, M. Jaidann and L.-S. Lussier, “Structural and morphological control of aligned nitrogen-doped carbon nanotubes”, Carbon 48(5), 1498–1507 (2010). Scholar
  110. [110]
    Y. T. Lee, N. S. Kim, S. Y. Bae, J. Park, S.-C. Yu, H. Ryu and H. J. Lee, “Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900-1100°C”, J. Phys. Chem. B 107(47), 12958–12963 (2003). Scholar
  111. [111]
    J. Liu, Y. Zhang, M. I. Ionescu, R. Li and X. Sun, “Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis”, Appl. Surf. Sci. 257(17), 7837–7844 (2011). Scholar
  112. [112]
    O. Toprakci, H. A. Toprakci, L. Ji, G. Xu, Z. Lin and X. Zhang, “Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries”, ACS Appl. Mater. Interfaces 4(3), 1273–1280 (2012). Scholar
  113. [113]
    Y. Zhou, J. Wang, Y. Hu, R. O’Hayre and Z. Shao, “A porous LiFePO4 and carbon nanotube composite”, Chem. Commun. (Camb). 46(38), 7151–3 (2010). Scholar
  114. [114]
    G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler and M. Wohlfahrt-Mehrens, “Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique”, J. Power Sources 119–121(1), 247–251 (2003). Scholar
  115. [115]
    Y. Xu, Y. Lu, L. Yan, Z. Yang and R. Yang, “Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials”, J. Power Sources 160(1), 570–576 (2006). Scholar
  116. [116]
    B. Kang and G. Ceder, “Battery materials for ultrafast charging and discharging”, Nature 458(7235), 190–193 (2009). Scholar
  117. [117]
    K. Zaghib, J. B. Goodenough, A. Mauger and C. Julien, “Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries”, J. Power Sources 194(2), 1021–1023 (2009). Scholar
  118. [118]
    G. Ceder and B. Kang, “Response to “unsupported claims of ultrafast charging of Li-ion batteries””, J. Power Sources. 194(2), 1024–1028 (2009). Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2014

Authors and Affiliations

  • Sixu Deng
    • 1
  • Hao Wang
    • 1
  • Hao Liu
    • 2
  • Jingbing Liu
    • 1
  • Hui Yan
    • 1
  1. 1.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingP.R. China
  2. 2.Chengdu Green Energy and Green Manufacturing Technology R&D CentreChengduP.R.China

Personalised recommendations