Nano-Micro Letters

, Volume 6, Issue 3, pp 209–226 | Cite as

Research Progress in Improving the Rate Performance of LiFePO4 Cathode Materials

  • Sixu Deng
  • Hao Wang
  • Hao Liu
  • Jingbing Liu
  • Hui Yan
Open Access
Review

Abstract

Olivine lithium iron phosphate (LiFePO4) is considered as a promising cathode material for high power-density lithium ion battery due to its high capacity, long cycle life, environmental friendly, low cost, and safety consideration. The theoretical capacity of LiFePO4 based on one electron reaction is 170 mAh g−1 at the stable voltage plateau of 3.5 V vs. Li/Li+. However, the instinct drawbacks of olivine structure induce a poor rate performance, resulting from the low lithium ion diffusion rate and low electronic conductivity. In this review, we summarize the methods for enhancing the rate performance of LiFePO4 cathode materials, including carbon coating, elements doping, preparation of nanosized materials, porous materials and composites, etc. Meanwhile, the advantages and disadvantages of above methods are also discussed.

Keywords

LiFePO4 Lithium ion battery Rate performance 

References

  1. [1]
    Y. Wang and G. Cao, “Developments in nanostructured cathode materials for high-performance lithium-ion batteries”, Adv. Mater. 20(12), 2251–2269 (2008). http://dx.doi.org/10.1002/adma.200702242Google Scholar
  2. [2]
    G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim and H.-J. Sohn, “Prospective materials and applications for Li secondary batteries”, Energ. Environ. Sci. 4(6), 1986–2002 (2011). http://dx.doi.org/10.1039/C0EE00831AGoogle Scholar
  3. [3]
    J. Wang and X. Sun, “Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries”, Energ. Environ. Sci. 5(1), 5163–5185 (2012). http://dx.doi.org/10.1039/c1ee01263kGoogle Scholar
  4. [4]
    A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, “Phospho-olivines as positive-electrode materials for rechargeable lithium batteries”, J. Electrochem. Soc. 144(4), 1188–1194 (1997). http://dx.doi.org/10.1149/1.1837571Google Scholar
  5. [5]
    A. Ritchie and W. Howard, “Recent developments and likely advances in lithium-ion batteries”, J. Power Sources 162(2), 809–812 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.07.014Google Scholar
  6. [6]
    T. Ohzuku and R. J. Brodd, “An overview of positive-electrode materials for advanced lithium-ion batteries”, J. Power Sources 174(2), 449–456 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.154Google Scholar
  7. [7]
    D. Jugović and D. Uskoković, “A review of recent developments in the synthesis procedures of lithium iron phosphate powders”, J. Power Sources 190(2), 538–544 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.01.074Google Scholar
  8. [8]
    K. Tang, J. Sun, X. Yu, H. Li and X. Huang, “Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity”, Electrochim. Acta. 54(26), 6565–6569 (2009). http://dx.doi.org/10.1016/j.electacta.2009.06.030Google Scholar
  9. [9]
    Y. Zhang, Q. Y. Huo, P. P. Du, L. Z. Wang, A. Q. Zhang, Y. H. Song, Y. Lv and G. Y. Li, “Advances in new cathode material LiFePO4 for lithium-ion batteries”, Synthetic Met. 162(13–14), 1315–1326 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.04.025Google Scholar
  10. [10]
    S. Y. Chung, J. T. Bloking and Y. M. Chiang, “Electronically conductive phospho-olivines as lithium storage electrodes”, Nat. Mater. 1(2), 123–8 (2002). http://dx.doi.org/10.1038/nmat732Google Scholar
  11. [11]
    J. Molenda, A. Stoklosa and T. Baok, “Modification in the electronic structure of cobalt bronze LixCoO2 and the resulting electrochemical properties”, Solid State Ionics 36(1–2), 53–58 (1989). http://dx.doi.org/10.1016/0167-2738(89)90058-1Google Scholar
  12. [12]
    Y. Shimakawa, T. Numata and J. Tabuchi, “Verwey-type transition and magnetic properties of the LiMn2O4 spinels”, J. Solid State Chem. 131(1), 138–143 (1997). http://dx.doi.org/10.1006/jssc.1997.7366Google Scholar
  13. [13]
    H. C. Dinh, S. I. Mho and I. H. Yeo, “Electrochemical analysis of conductive polymer-coated LiFePO4 nanocrystalline cathodes with controlled morphology”, Electroanal. 23(9), 2079–2086 (2011). http://dx.doi.org/10.1002/elan.201100222Google Scholar
  14. [14]
    H. Fang, Z. Pan, L. Li, Y. Yang, G. Yan, G. Li and S. Wei, “The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity”, Electrochem. Commun. 10(7), 1071–1073 (2008). http://dx.doi.org/10.1016/j.elecom.2008.05.010Google Scholar
  15. [15]
    L. X. Yuan, Z. H. Wang, W. X. Zhang, X. L. Hu, J. T. Chen, Y. H. Huang and J. B. Goodenough, “Development and challenges of LiFePO4 cathode material for lithium-ion batteries”, Energ. Environ. Sci. 4(2), 269 (2011). http://dx.doi.org/10.1039/c0ee00029aGoogle Scholar
  16. [16]
    M. S. Islam, D. J. Driscoll, C. A. J. Fisher and P. R. Slater, “Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material”, Chem. Mater. 17(20), 5085–5092 (2005). http://dx.doi.org/10.1021/cm050999vGoogle Scholar
  17. [17]
    J. M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414(6861), 359–367 (2001). http://dx.doi.org/10.1038/35104644Google Scholar
  18. [18]
    Y. Wang, J. Wang, J. Yang and Y. Nuli, “High-rate LiFePO4 electrode material synthesized by a novel route from FePO4·4H2O”, Adv. Funct. Mater. 16(16), 2135–2140 (2006). http://dx.doi.org/10.1002/adfm.200600442Google Scholar
  19. [19]
    K. Hanai, T. Maruyama, N. Imanishi, A. Hirano, Y. Takeda and O. Yamamoto, “Enhancement of electrochemical performance of lithium dry polymer battery with LiFePO4/carbon composite cathode”, J. Power Sources 178(2), 789–794 (2008). http://dx.doi.org/10.1016/j.jpowsour.2007.10.004Google Scholar
  20. [20]
    M. M. Doeff, J. D. Wilcox, R. Kostecki and G. Lau, “Optimization of carbon coatings on LiFePO4”, J. Power Sources 163(1), 180–184 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.11.075Google Scholar
  21. [21]
    Y. Kadoma, J.-M. Kim, K. Abiko, K. Ohtsuki, K. Ui and N. Kumagai, “Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose”, Electrochim. Acta 55(3), 1034–1041 (2010). http://dx.doi.org/10.1016/j.electacta.2009.09.029Google Scholar
  22. [22]
    S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro and N. Kumagai, “Emulsion drying synthesis of olivine LiFePO4/C composite and its electrochemical properties as lithium intercalation material”, Electrochim. Acta 49(24), 4213–4222 (2004). http://dx.doi.org/10.1016/j.electacta.2004.04.016Google Scholar
  23. [23]
    M. R. Yang, T. H. Teng and S. H. Wu, “LiFePO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, J. Power Sources 159(1), 307–311 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.04.113Google Scholar
  24. [24]
    M. A. E. Sanchez, G. E. S. Brito, M. C. A. Fantini, G. F. Goya and J. R. Matos, “Synthesis and characterization of LiFePO4 prepared by sol—gel technique”, Solid State Ionics 177(5–6), 497–500 (2006). http://dx.doi.org/10.1016/j.ssi.2005.11.018Google Scholar
  25. [25]
    Y. Lin, M. X. Gao, D. Zhu, Y. F. Liu and H. G. Pan, “Effects of carbon coating and iron phosphides on the electrochemical properties of LiFePO4/C”, J. Power Sources 184(2), 444–448 (2008). http://dx.doi.org/10.1016/j.jpowsour.2008.03.026Google Scholar
  26. [26]
    K. Wang, R. Cai, T. Yuan, X. Yu, R. Ran and Z. Shao, “Process investigation, electrochemical characterization and optimization of LiFePO4/C composite from mechanical activation using sucrose as carbon source”, Electrochim. Acta 54(10), 2861–2868 (2009). http://dx.doi.org/10.1016/j.electacta.2008.11.012Google Scholar
  27. [27]
    S. A. Needham, A. Calka, G. X. Wang, A. Mosbah and H. K. Liu, “A new rapid synthesis technique for electrochemically active materials used in energy storage applications”, Electrochem. Commun. 8(3), 434–438 (2006). http://dx.doi.org/10.1016/j.elecom.2005.12.011Google Scholar
  28. [28]
    L. Wang, G. C. Liang, X. Q. Ou, X. K. Zhi, J. P. Zhang and J. Y. Cui, “Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction”, J. Power Sources 189(1), 423–428 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.07.032Google Scholar
  29. [29]
    S. H. Ju and Y. C. Kang, “LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black”, Mater. Chem. Phys. 107(2–3), 328–333 (2008). http://dx.doi.org/10.1016/j.matchemphys.2007.07.025Google Scholar
  30. [30]
    Y. H. Nien, J. R. Carey and J. S. Chen, “Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors”, J. Power Sources 193(2), 822–827 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.04.013Google Scholar
  31. [31]
    Y. D. Cho, G. T. K. Fey and H. M. Kao, “The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes”, J. Power Sources 189(1), 256–262 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.09.053Google Scholar
  32. [32]
    R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik and J. Jamnik, “Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites”, J. Electrochem. Soc. 152(3), A607–A610 (2005). http://dx.doi.org/10.1149/1.1860492Google Scholar
  33. [33]
    H. Huang, S. C. Yin and L. F. Nazar, “Approaching theoretical capacity of LiFePO4 at room temperature at high rates”, Electrochem. Solid ST. 4(10), A170–A172 (2001). http://dx.doi.org/10.1149/1.1396695Google Scholar
  34. [34]
    B. Zhao, Y. Jiang, H. Zhang, H. Tao, M. Zhong and Z. Jiao, “Morphology and electrical properties of carbon coated LiFePO4 cathode materials”, J. Power Sources 189(1), 462–466 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.12.069Google Scholar
  35. [35]
    Y. Wang, Y. Wang, E. Hosono, K. Wang and H. Zhou, “The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method”, Angew. Chem. Int. Ed. Engl. 47(39), 7461–5 (2008). http://dx.doi.org/10.1002/anie.200802539Google Scholar
  36. [36]
    Z. Chen and J. R. Dahn, “Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density”, J. Electrochem. Soc. 149(9), A1184–A1189 (2002). http://dx.doi.org/10.1149/1.1498255Google Scholar
  37. [37]
    D. Zhang, X. Yu, Y. Wang, R. Cai, Z. Shao, X.-Z. Liao and Z.-F. Ma, “Ballmilling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor”, J. Electrochem. Soc. 156(10), A802–A808 (2009). http://dx.doi.org/10.1149/1.3183880Google Scholar
  38. [38]
    A. V. Murugan, T. Muraliganth and A. Manthiram, “Comparison of microwave assisted solvothermal and hydrothermal syntheses of LiFePO4/C nanocomposite cathodes for lithium ion batteries”, J. Phys. Chem. C 112(37), 14665–14671 (2008). http://dx.doi.org/10.1021/jp8053058Google Scholar
  39. [39]
    A. Vadivel Murugan, T. Muraliganth and A. Manthiram, “One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M=Mn, Fe, and Co) cathodes”, J. Electrochem. Soc. 156(2), A79–A83 (2009). http://dx.doi.org/10.1149/1.3028304Google Scholar
  40. [40]
    C. R. Sides, F. Croce, V. Y. Young, C. R. Martin and B. Scrosati, “A high-rate, nanocomposite LiFePO4/carbon cathode”, Electrochem. Solid ST. 8(9), A484 (2005). http://dx.doi.org/10.1149/1.1999916Google Scholar
  41. [41]
    S. T. Yang, N. H. Zhao, H. Y. Dong, J. X. Yang and H. Y. Yue, “Synthesis and characterization of LiFePO4 cathode material dispersed with nano-structured carbon”, Electrochim. Acta. 51(1), 166–171 (2005). http://dx.doi.org/10.1016/j.electacta.2005.04.013Google Scholar
  42. [42]
    H. Liu, Y. Feng, Z. Wang, K. Wang and J. Xie, “A PVB-based rheological phase approach to nano-LiFePO4/C composite cathodes”, Powder Technol. 184(3), 313–317 (2008). http://dx.doi.org/10.1016/j.powtec.2007.09.002Google Scholar
  43. [43]
    A. F. Liu, Z. H. Hu, Z. B. Wen, L. Lei and J. An, “LiFePO4/C with high capacity synthesized by carbothermal reduction method”, Ionics 16(4), 311–316 (2009). http://dx.doi.org/10.1007/s11581-009-0405-6Google Scholar
  44. [44]
    H. Xie and Z. Zhou, “Physical and electrochemical properties of mix-doped lithium iron phosphate as cathode material for lithium ion battery”, Electrochim. Acta 51(10), 2063–2067 (2006). http://dx.doi.org/10.1016/j.electacta.2005.07.014Google Scholar
  45. [45]
    J. Xu and G. Chen, “Effects of doping on the electronic properties of LiFePO4: A first-principles investigation”, Physica B: Condens. Matter 405(3), 803–807 (2010). http://dx.doi.org/10.1016/j.physb.2009.05.035Google Scholar
  46. [46]
    G. X. Wang, S. L. Bewlay, K. Konstantinov, H. K. Liu, S. X. Dou and J. H. Ahn, “Physical and electrochemical properties of doped lithium iron phosphate electrodes”, Electrochim. Acta. 50(2–3), 443–447 (2004). http://dx.doi.org/10.1016/j.electacta.2004.04.047Google Scholar
  47. [47]
    T. H. Teng, M. R. Yang, S. h. Wu and Y. P. Chiang, “Electrochemical properties of LiFe0.9Mg0.1PO4/carbon cathode materials prepared by ultrasonic spray pyrolysis”, Solid State Commun. 142(7), 389–392 (2007). http://dx.doi.org/10.1016/j.ssc.2007.03.010Google Scholar
  48. [48]
    X. Z. Liao, Y. S. He, Z. F. Ma, X. M. Zhang and L. Wang, “Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials”, J. Power Sources 174(2), 720–725 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.06.146Google Scholar
  49. [49]
    P. S. Herle, B. Ellis, N. Coombs and L. F. Nazar, “Nano-network electronic conduction in iron and nickel olivine phosphates”, Nat. Mater. 3(3), 147–152 (2004). http://dx.doi.org/10.1038/nmat1063Google Scholar
  50. [50]
    C. Delacourt, C. Wurm, L. Laffont, J. B. Leriche and C. Masquelier, “Electrochemical and electrical properties of Nb- and/or C-containing LiFePO4 composites”, Solid State Ionics 177(3–4), 333–341 (2006). http://dx.doi.org/10.1016/j.ssi.2005.11.003Google Scholar
  51. [51]
    C. Ouyang, S. Shi, Z. Wang, X. Huang and L. Chen, “First-principles study of Li ion diffusion in LiFePO4”, Phys. Rev. B 69(10), 104303 (2004).Google Scholar
  52. [52]
    M. Abbate, S. M. Lala, L. A. Montoro and J. M. Rosolen, “Ti-, Al-, and Cu-doping induced gap states in LiFePO4”, Electrochem. Solid ST. 8(6), A288–A290 (2005). http://dx.doi.org/10.1149/1.1895286Google Scholar
  53. [53]
    P. P. Prosini, D. Zane and M. Pasquali, “Improved electrochemical performance of a LiFePO4-based composite cathode”, Electrochim. Acta. 46(23), 3517–3523 (2001). http://dx.doi.org/10.1016/S0013-4686(01)00631-4Google Scholar
  54. [54]
    D. Wang, H. Li, S. Shi, X. Huang and L. Chen, “Improving the rate performance of LiFePO4 by Fe-site doping”, Electrochim. Acta. 50(14), 2955–2958 (2005). http://dx.doi.org/10.1016/j.electacta.2004.11.045Google Scholar
  55. [55]
    H. C. Shin, S. B. Park, H. Jang, K. Y. Chung, W. I. Cho, C. S. Kim and B. W. Cho, “Rate performance and structural change of Cr-doped LiFePO4/C during cycling”, Electrochim. Acta. 53(27), 7946–7951 (2008). http://dx.doi.org/10.1016/j.electacta.2008.06.005Google Scholar
  56. [56]
    C. S. Sun, Z. Zhou, Z. G. Xu, D. G. Wang, J. P. Wei, X. K. Bian and J. Yan, “Improved high-rate charge/discharge performances of LiFePO4/C via V-doping”, J. Power Sources 193(2), 841–845 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.03.061Google Scholar
  57. [57]
    L. Yang, L. Jiao, Y. Miao and H. Yuan, “Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping”, J. Solid State Electr. 13(10), 1541–1544 (2008). http://dx.doi.org/10.1007/s10008-008-0721-1Google Scholar
  58. [58]
    F. Lu, Y. Zhou, J. Liu and Y. Pan, “Enhancement of F-doping on the electrochemical behavior of carbon-coated LiFePO4 nanoparticles prepared by hydrothermal route”, Electrochim. Acta 56(24), 8833–8838 (2011). http://dx.doi.org/10.1016/j.electacta.2011.07.079Google Scholar
  59. [59]
    C. S. Sun, Y. Zhang, X. J. Zhang and Z. Zhou, “Structural and electrochemical properties of Cl-doped LiFePO4/C”, J. Power Sources 195(11), 3680–3683 (2010). http://dx.doi.org/10.1016/j.jpowsour.2009.12.074Google Scholar
  60. [60]
    Z.-H. Wang, L.-X. Yuan, M. Wu, D. Sun and Y.-H. Huang, “Effects of Na+ and Cl- co-doping on electrochemical performance in LiFePO4/C”, Electrochim. Acta 56(24), 8477–8483 (2011). http://dx.doi.org/10.1016/j.electacta.2011.07.018Google Scholar
  61. [61]
    Y. Lu, J. Shi, Z. Guo, Q. Tong, W. Huang and B. Li, “Synthesis of LiFe1–xNixPO4/C composites and their electrochemical performance”, J. Power Sources 194(2), 786–793 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.05.041Google Scholar
  62. [62]
    S. Beninati, L. Damen and M. Mastragostino, “Fast sol—gel synthesis of LiFePO4/C for high power lithium-ion batteries for hybrid electric vehicle application”, J. Power Sources. 194(2), 1094–1098 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.06.035Google Scholar
  63. [63]
    K. T. Lee, W. H. Kan and L. F. Nazar, “Proof of intercrystallite ionic transport in LiMPO4 electrodes (M = Fe, Mn)”, J. Am. Chem. Soc. 131(17), 6044–6045 (2009). http://dx.doi.org/10.1021/ja8090559Google Scholar
  64. [64]
    M. Gaberscek, R. Dominko and J. Jamnik, “Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes”, Electrochem. Commun. 9(12), 2778–2783 (2007). http://dx.doi.org/10.1016/j.elecom.2007.09.020Google Scholar
  65. [65]
    C. Delacourt, P. Poizot, S. Levasseur and C. Masquelier, “Size effects on carbon-free LiFePO4 powders”, Electrochem. Solid ST. 9(7), A352–A355 (2006). http://dx.doi.org/10.1149/1.2201987Google Scholar
  66. [66]
    P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon and C. Masquelier, “Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4”, Nat. Mater. 7(9), 741–747 (2008). http://dx.doi.org/10.1038/nmat2245Google Scholar
  67. [67]
    S. Lim, C. S. Yoon and J. Cho, “Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries”, Chem. Mater. 20(14), 4560–4564 (2008). http://dx.doi.org/10.1021/cm8006364Google Scholar
  68. [68]
    G. Qin, Q. Wu, J. Zhao, Q. Ma and C. Wang, “C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries”, J. Power Sources 248(15), 588–595 (2014). http://dx.doi.org/10.1016/j.jpowsour.2013.06.070Google Scholar
  69. [69]
    H. Deng, S. Jin, L. Zhan, W. Qiao and L. Ling, “Nest-like LiFePO4/C architectures for high performance lithium ion batteries”, Electrochim. Acta 78(1), 633–637 (2012). http://dx.doi.org/10.1016/j.electacta.2012.06.059Google Scholar
  70. [70]
    G. Qin, S. Xue, Q. Ma and C. Wang, “The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries”, CrystEngComm. 16(2), 260 (2014). http://dx.doi.org/10.1039/c3ce41967cGoogle Scholar
  71. [71]
    K. Saravanan, M. V. Reddy, P. Balaya, H. Gong, B. V. R. Chowdari and J. J. Vittal, “Storage performance of LiFePO4 nanoplates”, J. Mater. Chem. 19(5), 605–610 (2009). http://dx.doi.org/10.1039/b817242kGoogle Scholar
  72. [72]
    M. H. Lee, J. Y. Kim and H. K. Song, “A hollow sphere secondary structure of LiFePO4 nanoparticles”, Chem. Commun. (Camb). 46(36), 6795–6797 (2010). http://dx.doi.org/10.1039/c0cc02522dGoogle Scholar
  73. [73]
    Y. S. Hu, Y. G. Guo, R. Dominko, M. Gaberscek, J. Jamnik and J. Maier, “Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect”, Adv. Mater. 19(15), 1963–1966 (2007). http://dx.doi.org/10.1002/adma.200700697Google Scholar
  74. [74]
    R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, J. M. Goupil, S. Pejovnik and J. Jamnik, “Porous olivine composites synthesized by sol—gel technique”, J. Power Sources 153(2), 274–280 (2006). http://dx.doi.org/10.1016/j.jpowsour.2005.05.033Google Scholar
  75. [75]
    F. Yu, J. Zhang, Y. Yang and G. Song, “Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method”, J. Power Sources 189(1), 794–797 (2009). http://dx.doi.org/10.1016/j.jpowsour.2008.07.074Google Scholar
  76. [76]
    G. Qin, Q. Ma and C. Wang, “A porous C/LiFePO4/multiwalled carbon nanotubes cathode material for lithium ion batteries”, Electrochim. Acta 115(1), 407–415 (2014). http://dx.doi.org/10.1016/j.electacta.2013.10.177Google Scholar
  77. [77]
    R. Dominko, M. Bele, J.-M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon and J. Jamnik, “Wired porous cathode materials: A novel concept for synthesis of LiFePO4”, Chem. Mater. 19(12), 2960–2969 (2007). http://dx.doi.org/10.1021/cm062843gGoogle Scholar
  78. [78]
    R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858–A863 (2005). http://dx.doi.org/10.1149/1.1872674Google Scholar
  79. [79]
    C. M. Doherty, R. A. Caruso, B. M. Smarsly, P. Adelhelm and C. J. Drummond, “Hierarchically porous monolithic LiFePO4/carbon composite electrode materials for high power lithium ion batteries”, Chem. Mater. 21(21), 5300–5306 (2009). http://dx.doi.org/10.1021/cm9024167Google Scholar
  80. [80]
    C. M. Doherty, R. A. Caruso, B. M. Smarsly and C. J. Drummond, “Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries”, Chem. Mater. 21(13), 2895–2903 (2009). http://dx.doi.org/10.1021/cm900698pGoogle Scholar
  81. [81]
    N. N. Sinha, C. Shivakumara and N. Munichandraiah, “High rate capability of a dual-porosity LiFePO4/C composite”, ACS Appl. Mater. Inter. 2(7), 2031–2038 (2010). http://dx.doi.org/10.1021/am100309wGoogle Scholar
  82. [82]
    F. Yu, J. Zhang, Y. Yang and G. Song, “Porous micro-spherical aggregates of LiFePO4/C nanocomposites: A novel and simple template-free concept and synthesis via sol—gel-spray drying method”, J. Power Sources 195(19), 6873–6878 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.042Google Scholar
  83. [83]
    J. Qian, M. Zhou, Y. Cao, X. Ai and H. Yang, “Template-free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-ion batteries”, J. Phys. Chem. C 114(8), 3477–3482 (2010). http://dx.doi.org/10.1021/jp912102kGoogle Scholar
  84. [84]
    M. Xie, X. Zhang, J. Laakso, H. Wang and E. Lev鋘en, “New method of postmodifying the particle size and morphology of LiFePO4 via supercritical carbon dioxide”, Cryst. Growth Des. 12(5), 2166–2168 (2012). http://dx.doi.org/10.1021/cg3003146Google Scholar
  85. [85]
    M. Xie, X. Zhang, S. Deng, Y. Wang, H. Wang, J. Liu, H. Yan, J. Laakso and E. Lev鋘en, “The effects of supercritical carbon dioxide treatment on the morphology and electrochemical performance of LiFePO4 cathode materials”, RSC Adv. 3(31), 12786–12793 (2013). http://dx.doi.org/10.1039/c3ra41133hGoogle Scholar
  86. [86]
    M. Xie, X. Zhang, Y. Wang, S. Deng, H. Wang, J. Liu, H. Yan, J. Laakso and E. Levänen, “A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide”, Electrochim. Acta 94(1), 16–20 (2013). http://dx.doi.org/10.1016/j.electacta.2013.01.131Google Scholar
  87. [87]
    M. Gaberscek, R. Dominko, M. Bele, M. Remskar, D. Hanzel and J. Jamnik, “Porous, carbon-decorated LiFePO4 prepared by sol—gel method based on citric acid”, Solid State Ionics 176(19–22), 1801–1805 (2005). http://dx.doi.org/10.1016/j.ssi.2005.04.034Google Scholar
  88. [88]
    R. Dominko, J. M. Goupil, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel and J. Jamnik, “Impact of LiFePO4/C composites porosity on their electrochemical performance”, J. Electrochem. Soc. 152(5), A858-A863 (2005). http://dx.doi.org/10.1149/1.1872674
  89. [89]
    A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes”, Carbon 39(4), 507–514 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00155-XGoogle Scholar
  90. [90]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science 306(5696), 666–669 (2004). http://dx.doi.org/10.1126/science.1102896Google Scholar
  91. [91]
    A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6(3), 183–191 (2007). http://dx.doi.org/10.1038/nmat1849Google Scholar
  92. [92]
    Z.-L. Wang, D. Xu, H.-G. Wang, Z. Wu and X.-B. Zhang, “In situ fabrication of porous graphene electrodes for high-performance energy storage”, ACS Nano 7(3), 2422–2430 (2013). http://dx.doi.org/10.1021/nn3057388Google Scholar
  93. [93]
    L. P. Biro, P. Nemes-Incze and P. Lambin, “Graphene: nanoscale processing and recent applications”, Nanoscale 4(6), 1824–1839 (2012). http://dx.doi.org/10.1039/C1NR11067EGoogle Scholar
  94. [94]
    O. A. Vargas C, A. Caballero and J. Morales, “Can the performance of graphene nanosheets for lithium storage in Li-ion batteries be predicted?”, Nanoscale 4(6), 2083–2092 (2012). http://dx.doi.org/10.1039/C2NR11936FGoogle Scholar
  95. [95]
    F. Y. Su, Y. B. He, B. Li, X. C. Chen, C. H. You, W. Wei, W. Lv, Q. H. Yang and F. Kang, “Could graphene construct an effective conducting network in a high-power lithium ion battery?”, Nano Energy 1(3), 429–439 (2012). http://dx.doi.org/10.1016/j.nanoen.2012.02.004Google Scholar
  96. [96]
    F. Y. Su, C. You, Y. B. He, W. Lv, W. Cui, F. Jin, B. Li, Q. H. Yang and F. Kang, “Flexible and planar graphene conductive additives for lithium-ion batteries”, J. Mater. Chem. 20(43), 9644–9650 (2010). http://dx.doi.org/10.1039/C0JM01633KGoogle Scholar
  97. [97]
    X. Zhou, F. Wang, Y. Zhu and Z. Liu, “Graphene modified LiFePO4 cathode materials for high power lithium ion batteries”, J. Mater. Chem. 21(10), 3353–3358 (2011). http://dx.doi.org/10.1039/c0jm03287eGoogle Scholar
  98. [98]
    C. Su, X. Bu, L. Xu, J. Liu and C. Zhang, “A novel LiFePO4/graphene/carbon composite as a performance-improved cathode material for lithium-ion batteries”, Electrochim. Acta. 64(1), 190–195 (2012). http://dx.doi.org/10.1016/j.electacta.2012.01.014Google Scholar
  99. [99]
    J. Popovic, R. Demir-Cakan, J. Tornow, M. Morcrette, D. S. Su, R. Schlögl, M. Antonietti and M. M. Titirici, “LiFePO4 mesocrystals for lithium-ion batteries”, Small 7(8), 1127–1135 (2011). http://dx.doi.org/10.1002/smll.201002000Google Scholar
  100. [100]
    J. Ha, S. K. Park, S. H. Yu, A. Jin, B. Jang, S. Bong, I. Kim, Y. E. Sung and Y. Piao, “A chemically activated graphene-encapsulated LiFePO4 composite for high-performance lithium ion batteries”, Nanoscale 5(18), 8647–55 (2013). http://dx.doi.org/10.1039/c3nr02738dGoogle Scholar
  101. [101]
    Y. Shi, S.-L. Chou, J.-Z. Wang, D. Wexler, H.-J. Li, H.-K. Liu and Y. Wu, “Graphene wrapped LiFePO4/C composites as cathode materials for Li-ion batteries with enhanced rate capability”, J. Mater. Chem. 22(32), 16465–16470 (2012). http://dx.doi.org/10.1039/c2jm32649cGoogle Scholar
  102. [102]
    H. Wang, J. T. Robinson, G. Diankov and H. Dai, “Nanocrystal growth on graphene with various degrees of oxidation”, J. Am. Chem. Soc. 132(10), 3270–3271 (2010). http://dx.doi.org/10.1021/ja100329dGoogle Scholar
  103. [103]
    Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach and R. S. Ruoff, “Carbon-based supercapacitors produced by activation of graphene”, Science 332(6037), 1537–41 (2011). http://dx.doi.org/10.1126/science.1200770Google Scholar
  104. [104]
    J. Yang, J. Wang, D. Wang, X. Li, D. Geng, G. Liang, M. Gauthier, R. Li and X. Sun, “3D porous LiFePO4/graphene hybrid cathodes with enhanced performance for Li-ion batteries”, J. Power Sources 208(15), 340–344(2012). http://dx.doi.org/10.1016/j.jpowsour.2012.02.032Google Scholar
  105. [105]
    J. Yang, J. Wang, Y. Tang, D. Wang, X. Li, Y. Hu, R. Li, G. Liang, T.-K. Sham and X. Sun, “LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded graphene”, Energ. Environ. Sci. 6(5), 1521–1528 (2013). http://dx.doi.org/10.1039/C3EE24163GGoogle Scholar
  106. [106]
    R. H. Baughman, A. A. Zakhidov and W. A. de Heer, “Carbon nanotubes—the route toward applications”, Science 297(5582), 787–792 (2002). http://dx.doi.org/10.1126/science.1060928Google Scholar
  107. [107]
    T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi and T. Thio, “Electrical conductivity of individual carbon nanotubes”, Nature 382(6586), 54–56 (1996). http://dx.doi.org/10.1038/382054a0Google Scholar
  108. [108]
    J. Yang, J. Wang, X. Li, D. Wang, J. Liu, G. Liang, M. Gauthier, Y. Li, D. Geng, R. Li and X. Sun, “Hierarchically porous LiFePO4/nitrogen-doped carbon nanotubes composite as a cathode for lithium ion batteries”, J. Mater. Chem. 22(15), 7537–7543 (2012). http://dx.doi.org/10.1039/c2jm30380aGoogle Scholar
  109. [109]
    H. Liu, Y. Zhang, R. Li, X. Sun, S. Désilets, H. Abou-Rachid, M. Jaidann and L.-S. Lussier, “Structural and morphological control of aligned nitrogen-doped carbon nanotubes”, Carbon 48(5), 1498–1507 (2010). http://dx.doi.org/10.1016/j.carbon.2009.12.045Google Scholar
  110. [110]
    Y. T. Lee, N. S. Kim, S. Y. Bae, J. Park, S.-C. Yu, H. Ryu and H. J. Lee, “Growth of vertically aligned nitrogen-doped carbon nanotubes: control of the nitrogen content over the temperature range 900-1100°C”, J. Phys. Chem. B 107(47), 12958–12963 (2003). http://dx.doi.org/10.1021/jp0274536Google Scholar
  111. [111]
    J. Liu, Y. Zhang, M. I. Ionescu, R. Li and X. Sun, “Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis”, Appl. Surf. Sci. 257(17), 7837–7844 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.04.041Google Scholar
  112. [112]
    O. Toprakci, H. A. Toprakci, L. Ji, G. Xu, Z. Lin and X. Zhang, “Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries”, ACS Appl. Mater. Interfaces 4(3), 1273–1280 (2012). http://dx.doi.org/10.1021/am201527rGoogle Scholar
  113. [113]
    Y. Zhou, J. Wang, Y. Hu, R. O’Hayre and Z. Shao, “A porous LiFePO4 and carbon nanotube composite”, Chem. Commun. (Camb). 46(38), 7151–3 (2010). http://dx.doi.org/10.1039/c0cc01721cGoogle Scholar
  114. [114]
    G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler and M. Wohlfahrt-Mehrens, “Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique”, J. Power Sources 119–121(1), 247–251 (2003). http://dx.doi.org/10.1016/S0378-7753(03)00241-6Google Scholar
  115. [115]
    Y. Xu, Y. Lu, L. Yan, Z. Yang and R. Yang, “Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials”, J. Power Sources 160(1), 570–576 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.01.042Google Scholar
  116. [116]
    B. Kang and G. Ceder, “Battery materials for ultrafast charging and discharging”, Nature 458(7235), 190–193 (2009). http://dx.doi.org/10.1038/nature07853Google Scholar
  117. [117]
    K. Zaghib, J. B. Goodenough, A. Mauger and C. Julien, “Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries”, J. Power Sources 194(2), 1021–1023 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.05.043Google Scholar
  118. [118]
    G. Ceder and B. Kang, “Response to “unsupported claims of ultrafast charging of Li-ion batteries””, J. Power Sources. 194(2), 1024–1028 (2009). http://dx.doi.org/10.1016/j.jpowsour.2009.07.004Google Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2014

Authors and Affiliations

  • Sixu Deng
    • 1
  • Hao Wang
    • 1
  • Hao Liu
    • 2
  • Jingbing Liu
    • 1
  • Hui Yan
    • 1
  1. 1.The College of Materials Science and EngineeringBeijing University of TechnologyBeijingP.R. China
  2. 2.Chengdu Green Energy and Green Manufacturing Technology R&D CentreChengduP.R.China

Personalised recommendations