Advertisement

Nano-Micro Letters

, Volume 6, Issue 2, pp 143–152 | Cite as

Electrochemical Aptasensor Based on Prussian Blue-Chitosan-Glutaraldehyde for the Sensitive Determination of Tetracycline

  • Guanghui Shen
  • Yemin Guo
  • Xia Sun
  • Xiangyou Wang
Open Access
Article

Abstract

In this paper, a novel and sensitive electrochemical aptasensor for detecting tetracycline (TET) with prussian blue (PB) as the label-free signal was fabricated. A PB-chitosan-glutaraldehyde (PB-CS-GA) system acting as the signal indicator was developed to improve the sensitivity of the electrochemical aptasensor. Firstly, the PB-CS-GA was fixed onto the glass carbon electrode surface. Then, colloidal gold nanoparticles (AuNPs) were droped onto the electrode to immobilize the anti-TET aptamer for preparation of the aptasensor. The stepwise assembly process of the aptasensor was characterized by cyclic voltammetry (C-V) and scanning electron microscope (SEM). The target TET captured onto the electrode induced the current response of the electrode due to the non-conducting biomoleculars. Under the optimum operating conditions, the response of differential pulse voltammetry (DPV) was used for detecting the concentration of TET. The proposed aptasensor showed a high sensitivity and a wide linear range of 10−9 ∼ 10−5 M and 10−5 ∼ 10−2 M with the correlation coefficients of 0.994 and 0.992, respectively. The detection limit was 3.2×10−10 M (RSD 4.12%). Due to its rapidity, sensitivity and low cost, the proposed aptasensor could be used as a pre-scanning method in TET determination for the analysis of livestock products.

Keywords

Aptasensor Tetracycline Colloidal gold nanoparticle Chitosan 

References

  1. [1]
    K. Kishida, “Simplified extraction of tetracycline antibiotics from milk using a centrifugal ultrafiltration device”, Food Chem. 126(2), 687–690 (2011). http://dx.doi.org/10.1016/j.foodchem.2010.11.021CrossRefGoogle Scholar
  2. [2]
    D. E. Brodersen, W. M. Jr. Clemons, A. P. Carter, R. J. Morgan-Warren, B. T. Wimberly and V. Ramakrishnan, “The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit”, Cell 103(7), 1143–1154 (2000). http://dx.doi.org/10.1016/S0092-8674(00)00216-6CrossRefGoogle Scholar
  3. [3]
    F. K. Muriuki, “Tetracycline residue levels in cattle meat from Nairobi salughter house in Kenya”, J. Vet. Sci. 2(2), 97–101 (2001).Google Scholar
  4. [4]
    N. Vragovic, D. Bazulic and B. Njari, “Risk assessment of streptomycin and tetracycline residues in meat and milk on Croatian market”, Food Chem. 49(2), 352–355 (2011). http://dx.doi.org/10.1016/j.fct.2010.11.006CrossRefGoogle Scholar
  5. [5]
    M. Kuhne, S. Wegmann, A. Kobe and R. Fries, “Tetracycline residues in bones of slaughtered animals”, Food Control. 11(3). 175–180 (2000). http://dx.doi.org/10.1016/S0956-7135(99)00092-4CrossRefGoogle Scholar
  6. [6]
    G. T. Peres, S. Rath and F. G. Reyes, “A HPLC with fluorescence detection method for the determination of tetracyclines residues and evaluation of their stability in honey”, Food Control. 21(5), 620–625 (2010). http://dx.doi.org/10.1016/j.foodcont.2009.09.006CrossRefGoogle Scholar
  7. [7]
    J. G. Salisbury, T. J. Nicholls, A. M. Lammerding, J. Turnidge, M. J. Nunn, “A risk analysis framework for the long-term management of antibiotic resistance in food-producing animals”. Int. J. Antimicrob. Agents 20(3), 153–164 (2002). http://dx.doi.org/10.1016/S0924-8579(02)00169-3CrossRefGoogle Scholar
  8. [8]
    Commission Regulation 508/1999/EC, 1999.Google Scholar
  9. [9]
    Japanese Ministry of Health Welfare and Labor, 2008.Google Scholar
  10. [10]
    US Food and Drug Administration, 1975.Google Scholar
  11. [11]
    J. Kurittu, S. Lönnberg, M. Virta and M. Karp, “A group-specific microbiological test for the detection of tetracycline residues in raw milk”. J. Agric. Food. Chem. 48(8), 3372–3377 (2000). http://dx.doi.org/10.1021/jf9911794CrossRefGoogle Scholar
  12. [12]
    J. W. Fritz and Y. Zuo, “Simultaneous determination of tetracycline, oxytetracycline, and 4-epitetracycline in milk by high-performance liquid chromatography”, Food Chem. 105(3), 1297–1301 (2007). http://dx.doi.org/10.1016/j.foodchem.2007.03.047CrossRefGoogle Scholar
  13. [13]
    K. Ng and S. W. Linder, “HPLC separation of tetracycline analogues: comparison study of laser-based polarimetric detection with UV detection”, J. Chromatogr Sci. 41(9), 460–466 (2003). http://dx.doi.org/10.1093/chromsci/41.9.460CrossRefGoogle Scholar
  14. [14]
    A. C. Martel, S. Zeggane, P. Drajnudel, J. P. Faucon and M. Aubert, “Tetracycline residues in honey after hive treatment”, Food Addit. Contam. 23(3), 265–273 (2006). http://dx.doi.org/10.1080/02652030500469048CrossRefGoogle Scholar
  15. [15]
    P. Kowalski, “Capillary electrophoretic method for the simultaneous determination of tetracycline residues in fish samples”, J. Pharm. Biomed. 47(3), 487–493 (2008). http://dx.doi.org/10.1016/j.jpba.2008.01.036CrossRefGoogle Scholar
  16. [16]
    B. Y. Deng, Q. X. Xu, H. Lu, L. Ye and Y. Z. Wang, “Pharmacokinetics and residues of tetracycline in crucian carp muscle using capillary electrophoresis on-line coupled with electrochemiluminescence detection”, Food Chem. 134(4), 2350–2354 (2012). http://dx.doi.org/10.1016/j.foodchem.2012.03.117CrossRefGoogle Scholar
  17. [17]
    L. M. Shen, M. L. Chen and X. W. Chen, “A novel flow-through fluorescence optosensor for the sensitive determination of tetracycline”, Talanta 85(3), 1285–1290 (2011). http://dx.doi.org/10.1016/j.talanta.2011.06.006CrossRefGoogle Scholar
  18. [18]
    N. Rodríguez, B. D. Real, M. Cruz Ortiz, L. A. Sarabia, A. Herrero, “Usefulness of parallel factor analysis to handle the matrix effect in the fluorescence determination of tetracycline in whey milk”, Anal. Chim. Acta 632(1), 42–51 (2009). http://dx.doi.org/10.1016/j.aca.2008.10.051CrossRefGoogle Scholar
  19. [19]
    H. Oka, Y. Ito, Y. Ikai, T. Kagami and K. Harada, “Mass spectrometric analysis of tetracycline antibiotics in foods”, J. Chromatogr. A. 812(1–2), 309–319 (1998). http://dx.doi.org/10.1016/S0021-9673(97)01278-8CrossRefGoogle Scholar
  20. [20]
    M. E. Dasenaki and N. S. Thomaidis, “Multi-residue determination of seventeen sulfonamides and five tetracyclines in fish tissue using a multi-stage LC-ESIMS/MS approach based on advanced mass spectrometric techniques”, Anal. Chim. Acta 672(1–2), 93–102 (2010). http://dx.doi.org/10.1016/j.aca.2010.04.034CrossRefGoogle Scholar
  21. [21]
    F. Conzuelo, M. Gamella, S. Campuzano, A. Julio Reviejo and J. M. Pingarrón, “Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk”, Anal. Chim. Acta 737(6), 29–36 (2012). http://dx.doi.org/10.1016/j.aca.2012.05.051CrossRefGoogle Scholar
  22. [22]
    M. Jeon, J. Kim, K. J. Paeng, S. W. Park and I. R. Paeng, “Biotin-avidin mediated competitive enzymelinked immunosorbent assay to detect residues of tetracyclines in milk”, Microchem. J. 88(1), 26–31 (2008). http://dx.doi.org/10.1016/j.microc.2007.09.001CrossRefGoogle Scholar
  23. [23]
    L. Zhou, D. J. Li, L. Gai, J. P. Wang and Y. B. Li, “Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification”, Sens. Actuators, B: Chem. 162(1), 201–208 (2012). http://dx.doi.org/10.1016/j.snb.2011.12.067CrossRefGoogle Scholar
  24. [24]
    A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands”, Nature 346, 818–822 (1990). http://dx.doi.org/10.1038/346818a0CrossRefGoogle Scholar
  25. [25]
    C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase”, Science 249(4968), 505–510 (1990). http://dx.doi.org/10.1126/science.2200121CrossRefGoogle Scholar
  26. [26]
    C. Pestourie, B. Tavitian and F. Duconge, “Aptamers against extracellular targets for in vivo applications”, Biochimie 87(9–10), 921–930 (2005). http://dx.doi.org/10.1016/j.biochi.2005.04.013CrossRefGoogle Scholar
  27. [27]
    C. A. Savran, S. M. Knudsen, A. D. Ellington and S. R. Manalis, “Micromechanical detection of proteins using aptamer-based receptor molecules”. Anal. Chem. 76(11), 3194–3198 (2004). http://dx.doi.org/10.1021/ac049859fCrossRefGoogle Scholar
  28. [28]
    Y. J. Kim, Y. S. Kim, J. H. Niazi and M. B. Gu, “Electrochemical aptasensor for tetracycline detection”, Bioprocess. Biosyst. Eng. 33(1), 31–37 (2010). http://dx.doi.org/10.1007/s00449-009-0371-4CrossRefGoogle Scholar
  29. [29]
    K. Kerman, M. Saito, S. Yamamura, Y. Takamura and E. Tamiya, “Nanomaterial-based electrochemical biosensors for medical applications”, Trends Anal. Chem. 27(7), 585–592 (2008). http://dx.doi.org/10.1016/j.trac.2008.05.004CrossRefGoogle Scholar
  30. [30]
    Y. T. Shi, R. Yuan, Y. Q. Chai, M. Y. Tang and X. L. He, “Amplification of antigen-antibody interactions via back-filling of HRP on the layer-bylayer self-assembling of thionine and gold nanoparticles films on Titania nanoparticles/gold nanoparticlescoated Au electrode”, J. Electroanal. Chem. 604(1), 9–16 (2007). http://dx.doi.org/10.1016/j.jelechem.2007.02.027CrossRefGoogle Scholar
  31. [31]
    S. Y. Xu and X. Z. Han, “A novel method to construct a third-generation biosensor:self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co -acrylic acid) nanospheres”, Biosens. Bioelectron. 19(9), 1117–1120 (2004). http://dx.doi.org/10.1016/j.bios.2003.09.007CrossRefGoogle Scholar
  32. [32]
    S. Q. Liu, D. Leech and H. X. Ju, “Application of colloidal gold in protein immobilization, electron transfer, and biosensing”, Anal. Lett. 36(1), 1–19 (2003). http://dx.doi.org/10.1081/al-120017740CrossRefGoogle Scholar
  33. [33]
    P. Sorlier, A. Denuzière, C. Viton and A. Domard, “Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan”, Biomacromolecules 2(3), 765–772 (2001). http://dx.doi.org/10.1021/bm015531+CrossRefGoogle Scholar
  34. [34]
    J. H. Niazi, S. J. Lee and M. B. Gu, “Single-stranded, DNA aptamers specific for antibiotics tetracyclines”, Bioorg. Med. Chem. 16(15), 7245–7253 (2008). http://dx.doi.org/10.1016/j.bmc.2008.06.033CrossRefGoogle Scholar
  35. [35]
    K.C. Grabar, R.G. Freeman, M. B. Hommer and M.J. Natan, “Preparation and characterization of Au colloid monolayers”, Anal. Chem. 67(4), 735–743 (1995). http://dx.doi.org/10.1021/ac00100a008CrossRefGoogle Scholar
  36. [36]
    C. Cao, J. P. Kim, B. W. Kim, H. Chae, H. C. Yoon, S. S. Yang and S. J. Sim, “A strategy for sensitivity and specificity enhancements in prostate specific antigen-a1-antichymotrypsin detection based on surface plasmon resonance”, Biosens. Bioelectron. 21(11), 2106–2113 (2006). http://dx.doi.org/10.1016/j.bios.2005.10.014CrossRefGoogle Scholar
  37. [37]
    Y. Wang, W. H. Liu, K. M. Wang, G. L. Shen and R. Q. Yu. “Fluorescence optical fiber sensor for tetracycline”, Talanta. 47(1), 33–42 (1998). http://dx.doi.org/10.1016/S0039-9140(98)00049-6CrossRefGoogle Scholar
  38. [38]
    H. Zhao, H. T. Wang, X. Quan and F. Tan, “Amperometric Sensor for Tetracycline Determination Based on Molecularly Imprinted Technique”, Procedia Environmental Sciences 18, 249–257 (2013). http://dx.doi.org/10.1016/j.proenv.2013.04.032CrossRefGoogle Scholar
  39. [39]
    P. Su, N. Liu, M. X. Zhu, B. A. Ning, M. Liu, Z. H. Yang, X. J. Pan and Z. X. Gao, “Simultaneous detection of five antibiotics in milk by high-throughput suspension array technology”. Talanta 85(2), 1160–1165 (2011). http://dx.doi.org/10.1016/j.talanta.2011.05.040CrossRefGoogle Scholar
  40. [40]
    E. Karageorgou, M. Armeni, I. Moschou, and V. Samanidou, “Ultrasound-assisted dispersive extraction for the high pressure liquid chromatographic determination of tetracyclines residues in milk with diode array detection”. Food Chem. 150(1), 328–334 (2014). http://dx.doi.org/10.1016/j.foodchem.2013.11.008CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2014

Authors and Affiliations

  • Guanghui Shen
    • 1
  • Yemin Guo
    • 1
  • Xia Sun
    • 1
  • Xiangyou Wang
    • 1
  1. 1.School of Agricultural and Food EngineeringShandong University of TechnologyZibo, ShandongChina

Personalised recommendations