Advertisement

Nano-Micro Letters

, Volume 6, Issue 2, pp 125–135 | Cite as

RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/RGO Composite and Its Regeneration through A Fenton-like Reaction

  • Yalin Qin
  • Mingce LongEmail author
  • Beihui Tan
  • Baoxue Zhou
Open Access
Article

Abstract

Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide (RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10–20 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore, with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater.

Keywords

Magnetic adsorbent Fe3O4 nanoparticles Reduced grapheme oxide Fenton-likereaction Regeneration 

References

  1. [1]
    R. Sanghi and P. Verma, “Decolorisation of aqueous dye solutions by low-cost adsorbents: a review”, Color. Technol. 129(2), 85–108 (2013). http://dx.doi.org/10.1111/cote.12019CrossRefGoogle Scholar
  2. [2]
    A. Dqbrowski, “Adsorption — from theory to practice”, Adv. Colloid Interface Sci. 93(1–3), 135–224 (2001). http://dx.doi.org/10.1016/S0001-8686(00)00082-8CrossRefGoogle Scholar
  3. [3]
    J. C. Lazo-Cannata, A. Nieto-Márquez, A. Jacoby, A. L. Paredes-Doig, A. Romero, M. R. Sun-Kou and J. L. Valverde, “Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength”, Sep. Purif. Technol. 80(2), 217–224 (2011). http://dx.doi.org/10.1016/j.seppur.2011.04.029CrossRefGoogle Scholar
  4. [4]
    R. Liu, W. Gong, H. Lan, T. Yang, H. Liu and J. Qu, “Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: Competitive adsorption effects”, Sep. Purif. Technol. 92, 100–105 (2012). http://dx.doi.org/10.1016/j.seppur.2012.03.020CrossRefGoogle Scholar
  5. [5]
    X. Hu, B. Liu, Y. Deng, H. Chen, S. Luo, C. Sun, P. Yang and S. Yang, “Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution”, Appl. Catal. B: Environ. 107(3-4), 274–283 (2011). http://dx.doi.org/10.1016/j.apcatb.2011.07.025CrossRefGoogle Scholar
  6. [6]
    S. Tang, N. Lu, J. Li and Y. Wu, “Design and application of an up-scaled dielectric barrier discharge plasma reactor for regeneration of phenolsaturated granular activated carbon”, Sep. Purif. Technol. 95, 73–79 (2012). http://dx.doi.org/10.1016/j.seppur.2012.05.002CrossRefGoogle Scholar
  7. [7]
    V. K. K. Upadhyayula, S. Deng, M. C. Mitchell and G. B. Smith, “Application of carbon nanotube technology for removal of contaminants in drinking water: a review”, Sci. Total Environ. 408(1), 1–13 (2009). http://dx.doi.org/10.1016/j.scitotenv.2009.09.027CrossRefGoogle Scholar
  8. [8]
    Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications”, Adv. Mater. 22(35), 3906–3924 (2010). http://dx.doi.org/10.1002/adma.201001068CrossRefGoogle Scholar
  9. [9]
    J. Kim, L. J. Cote and J. Huang, “Two dimensional soft material: new faces of graphene oxide”, Acc. Chem. Res. 45(8), 1356–1364 (2012). http://dx.doi.org/10.1021/ar300047sCrossRefGoogle Scholar
  10. [10]
    S. Wang, H. Sun, H. M. Ang and M. O. Tadé, “Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials”, Chem. Eng. J. 226, 336–347 (2013). http://dx.doi.org/10.1016/j.cej.2013.04.070CrossRefGoogle Scholar
  11. [11]
    K. C. Kemp, H. Seema, M. Saleh, N. H. Le, K. Mahesh, V. Chandra and K. S. Kim, “Environmental applications using graphene composites: water remediation and gas adsorption”, Nanoscale 5(8), 3149–71 (2013). http://dx.doi.org/10.1039/c3nr33708aCrossRefGoogle Scholar
  12. [12]
    Y. Zhi, G. Rungang, H. Nantao, C. Jing, C. Yingwu, Z. Liying, W. Hao, K. Eric Siu-Wai and Z. Yafei, “The prospective 2D graphene nanosheets: preparation, functionalization and applications”, Nano-Micro Lett. 4(1), 1–9 (2012). http://dx.doi.org/10.3786/nml.v4i1.p1-9CrossRefGoogle Scholar
  13. [13]
    J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull and J. Huang, “Graphene oxide sheets at interfaces”, J. Am. Chem. Soc. 132(23), 8180–8186 (2010). http://dx.doi.org/10.1021/ja102777pCrossRefGoogle Scholar
  14. [14]
    Z. Liu, J. T. Robinson, X. Sun and H. Dai, “PEGylated nanographene oxide for delivery of water-Insoluble cancer drugs”, J. Am. Chem. Soc. 130(33), 10876–10877 (2008). http://dx.doi.org/10.1021/ja803688xCrossRefGoogle Scholar
  15. [15]
    G. Zhao, T. Wen, C. Chen and X. Wang, “Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas”, RSC Adv. 2(25), 9286–9303 (2012). http://dx.doi.org/10.1039/c2ra20990jCrossRefGoogle Scholar
  16. [16]
    L. Wan, M. Long, D. Zhou, L. Zhang and W. Cai, “Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide”, Nano-Micro Lett. 4(2), 90–97 (2012). http://dx.doi.org/dx.doi.org/10.3786/nml.v4i2.p90-97CrossRefGoogle Scholar
  17. [17]
    C. T. Yavuz, J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson and V. L. Colvin, “Low-field magnetic separation of monodisperse Fe3O4 nanocrystals”, Science 314(5801), 964–967 (2006). http://dx.doi.org/10.1126/science.1131475CrossRefGoogle Scholar
  18. [18]
    M. Tayyebeh, A. Abbas, Z. Mohammad Ali, A. Mazaher and K. Nadia, “Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples”, Nano-Micro Lett. 4(1), 57–63 (2012). http://dx.doi.org/10.3786/nml.v4i1.p57-63CrossRefGoogle Scholar
  19. [19]
    H. Sun, L. Cao and L. Lu, “Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants”, Nano Res. 4(6), 550–562 (2011). http://dx.doi.org/10.1007/s12274-011-0111-3CrossRefGoogle Scholar
  20. [20]
    Y. Huang and A. A. Keller, “Magnetic nanoparticle adsorbents for emerging organic contaminants”, ACS Sustainable Chem. Eng. 1(1), 731–736 (2013). http://dx.doi.org/10.1021/sc400047qGoogle Scholar
  21. [21]
    L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, “Intrinsic peroxidase-like activity of ferromagnetic nanoparticles”, Nat. Nanotechnol. 2(9), 577–83 (2007). http://dx.doi.org/10.1038/nnano.2007.260CrossRefGoogle Scholar
  22. [22]
    J. Zhang, J. Zhuang, L. Gao, Y. Zhang, N. Gu, J. Feng, D. Yang, J. Zhu and X. Yan, “Decomposing phenol by the hidden talent of ferromagnetic nanoparticles”, Chemosphere 73(9), 1524–1528 (2008). http://dx.doi.org/10.1016/j.chemosphere.2008.05.050CrossRefGoogle Scholar
  23. [23]
    V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang and K. S. Kim, “Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal”, ACS Nano 4(7), 3979–3986. (2010). http://dx.doi.org/10.1021/nn1008897CrossRefGoogle Scholar
  24. [24]
    Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan and X. Wang, “Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent”, J. Mater. Chem. 22 (8), 3527–3535 (2012). http://dx.doi.org/10.1039/c2jm15544cCrossRefGoogle Scholar
  25. [25]
    F. He, J. Fan, D. Ma, L. Zhang, C. Leung and H. L. Chan, “The attachment of Fe3O4nanoparticles to graphene oxide by covalent bonding”, Carbon 48(11), 3139–3144 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.052CrossRefGoogle Scholar
  26. [26]
    M. Liu, C. Chen, J. Hu, X. Wu and X. Wang, “Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal”, J. Phys. Chem. C. 115(51), 25234–25240 (2011). http://dx.doi.org/10.1021/jp208575mCrossRefGoogle Scholar
  27. [27]
    G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao and J. Wang, “A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution”, J. Mater. Chem. 22(3), 1033–1039 (2012). http://dx.doi.org/10.1039/c1jm13433gCrossRefGoogle Scholar
  28. [28]
    X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo and J. Zhang, “Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage”, ACS Nano 6(8), 6592–6599 (2012). http://dx.doi.org/10.1021/nn301629vCrossRefGoogle Scholar
  29. [29]
    S. Q. Liu, B. Xiao, L. R. Feng, S. S. Zhou, Z. G. Chen, C. B. Liu, F. Chen, Z. Y. Wu, N. Xu, W. C. Oh and Z. D. Meng, “Graphene oxide enhances the Fentonlike photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation”, Carbon. 64, 197–206 (2013). http://dx.doi.org/10.1016/j.carbon.2013.07.052CrossRefGoogle Scholar
  30. [30]
    Y. C. Lee, S. J. Chang, M. H. Choi, T. J. Jeon, T. Ryu and Y. S. Huh, “Self-assembled graphene oxide with organo-building blocks of Fe-aminoclay for heterogeneous Fenton-like reaction at near-neutral pH: a batch experiment”, Appl. Catal. B-Environ. 142, 494–503 (2013). http://dx.doi.org/10.1016/j.apcatb.2013.05.066CrossRefGoogle Scholar
  31. [31]
    J. J. An, L. H. Zhu, N. Wang, Z. Song, Z. Y. Yang, D. Y. Du and H. Q. Tang, “Photo-Fenton like degradation of tetrabromobisphenol A with graphene-BiFeO3 composite as a catalyst”, Chem. Eng. J. 219, 225–237 (2013). http://dx.doi.org/10.1016/j.cej.2013.01.013CrossRefGoogle Scholar
  32. [32]
    W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc. 80(6), 1339–1339 (1958). http://dx.doi.org/10.1021/ja01539a017CrossRefGoogle Scholar
  33. [33]
    C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and Y. Feng, “Synthesis of visible light responsive graphene oxide/TiO2 composites with p/n heterojunction”, ACS Nano 4(11), 6425–6432 (2010). http://dx.doi.org/10.1021/nn102130mCrossRefGoogle Scholar
  34. [34]
    G. Wang, X. Shen, B. Wang, J. Yao and J. Park, “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets.”, Carbon 47(5), 1359–1364 (2009). http://dx.doi.org/10.1016/j.carbon.2009.01.027CrossRefGoogle Scholar
  35. [35]
    Z. J. Fan, W. Kai, J. Yan, T. Wei, L. J. Zhi, J. Feng, Y. Ren, L. P. Song and F. Wei, “Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide”, ACS Nano 5(1), 191–198 (2011). http://dx.doi.org/10.1021/nn102339tCrossRefGoogle Scholar
  36. [36]
    P. Wang, J. Wang, T. Ming, X. Wang, H. Yu, J. Yu, Y. Wang and M. Lei, “Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance”, ACS Appl. Mater. Interfaces 5(8), 2924–2929 (2013). http://dx.doi.org/10.1021/am4008566CrossRefGoogle Scholar
  37. [37]
    Y. Liu, W. Jiang, Y. Wang, X. J. Zhang, D. Song and F. S. Li, “Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid-liquid interface using oleate as surfactant and reactant”, J. Magn. Magn. Mater. 321(5), 408–412 (2009). http://dx.doi.org/10.1016/j.jmmm.2008.09.039CrossRefGoogle Scholar
  38. [38]
    X. Gou, G. Wang, J. Park, H. Liu and J. Yang, “Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors”, Nanotechnol. 19(12), 125606 (2008). http://dx.doi.org/10.1088/0957-4484/19/12/125606CrossRefGoogle Scholar
  39. [39]
    O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation”, J. Raman Spectrosc. 34(11), 845–852 (2003). http://dx.doi.org/10.1002/jrs.1056CrossRefGoogle Scholar
  40. [40]
    M. Long, Y. Qin, C. Chen, X. Guo, B. Tan and W. Cai, “Origin of visible light photoactivity of RGO/TiO2 by in situ hydrothermal growth of under-grown TiO2 with graphene oxide”, J. Phys. Chem. C. 117(32), 16734–16741 (2013). http://dx.doi.org/10.1021/jp4058109CrossRefGoogle Scholar
  41. [41]
    Y. He, L. Huang, J.-S. Cai, X.-M. Zheng and S.-G. Sun, “Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries”, Electrochim. Acta 55(3), 1140–1144 (2010). http://dx.doi.org/10.1016/j.electacta.2009.10.014CrossRefGoogle Scholar
  42. [42]
    Y. Xue, H. Chen, D. Yu, S. Wang, M. Yardeni, Q. Dai, M. Guo, Y. Liu, F. Lu, J. Qu and L. Dai, “Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications”, Chem. Commun. 47(42), 11689–11691 (2011). http://dx.doi.org/10.1039/c1cc14789gCrossRefGoogle Scholar
  43. [43]
    K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure Appl. Chem. 57(11), 2201–2218 (1982). http://dx.doi.org/10.1351/pac198254112201Google Scholar
  44. [44]
    X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang and J. G. Hou, “ Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets”, ACS Nano 5(2), 952–958 (2011). http://dx.doi.org/10.1021/nn102291jCrossRefGoogle Scholar
  45. [45]
    J. N. Tiwari, K. Mahesh, N. H. Le, K. C. Kemp, R. Timilsina, R. N. Tiwari and K. S. Kim, “Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions”, Carbon 56, 173–182 (2013). http://dx.doi.org/10.1016/j.carbon.2013.01.001CrossRefGoogle Scholar
  46. [46]
    R. Zhang, M. Hummelgård, G. Lv and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide”, Carbon 49(4), 1126–1132 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.026CrossRefGoogle Scholar
  47. [47]
    I. Moreno-Villoslada, M. Jofré, V. Miranda, R. González, T. Sotelo, S. Hess and B. L. Rivas, “pH dependence of the interaction between rhodamine B and the water-soluble poly(sodium 4-styrenesulfonate)”, J. Phys. Chem. B 110(24), 11809–11812 (2006). http://dx.doi.org/10.1021/jp061457jCrossRefGoogle Scholar
  48. [48]
    A. J. Ahamed, V. Balakrishnan and S. Arivoli, “Kinetic and equilibrium studies of Rhodamine B adsorption by low cost activated carbon”, Arch. Appl. Sci. Res. 3(3), 154–166 (2011).Google Scholar
  49. [49]
    G. K. Ramesha, A. V. Kumara, H. B. Muralidhara and S. Sampath, “Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes”, J. Colloid Interf. Sci. 361(1), 270–7 (2011). http://dx.doi.org/10.1016/j.jcis.2011.05.050CrossRefGoogle Scholar
  50. [50]
    M. Xia, M. Long, Y. Yang, C. Chen, W. Cai and B. Zhou, “A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution”, Appl. Catal. B: Environ. 110, 118–125 (2011). http://dx.doi.org/10.1016/j.apcatb.2011.08.033CrossRefGoogle Scholar
  51. [51]
    A. Chouket, H. Elhouichet, M. Oueslati, H. Koyama, B. Gelloz and N. Koshida, “Energy transfer in poroussilicon/laser-dye composite evidenced by polarization memory of photoluminescence”, Appl. Phys. Lett. 91(21), 211902 (2007). http://dx.doi.org/10.1063/1.2814051sCrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2014

Authors and Affiliations

  • Yalin Qin
    • 1
  • Mingce Long
    • 1
    Email author
  • Beihui Tan
    • 1
  • Baoxue Zhou
    • 1
  1. 1.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations