Advertisement

Nano-Micro Letters

, Volume 5, Issue 4, pp 260–273 | Cite as

Synthesis, Properties and Potential Applications of Porous Graphene: A Review

  • Paola Russo
  • Anming HuEmail author
  • Giuseppe Compagnini
Open Access
Review

Abstract

Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.

Keywords

Graphene Porous graphene Gas separation Energy storage 

References

  1. [1]
    A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, 183–191 (2007). http://dx.doi.org/10.1038/nmat1849Google Scholar
  2. [2]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov “Electric field effect in atomically thin carbon films”, Science 306, 666–669 (2004). http://dx.doi.org/10.1126/science.1102896Google Scholar
  3. [3]
    T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the electronic structure of bilayer graphene”, Science 313, 951–954 (2006). http://dx.doi.org/10.1126/science.1130681Google Scholar
  4. [4]
    L. Kane and E. J. Mele, “Quantum spin hall effect in graphene”, Phys. Rev. Lett. 95(22), 226801–4 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.226801Google Scholar
  5. [5]
    M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber and F. Giunea, “Local defects and ferromagnetism in graphene layers”, Phys. Rev. B 72(15), 155121–5 (2005). http://dx.doi.org/10.1103/PhysRevB.72.155121Google Scholar
  6. [6]
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett. 9(1), 30–35 (2009). http://dx.doi.org/10.1021/nl801827vGoogle Scholar
  7. [7]
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324(5932), 1312–1314 (2009). http://dx.doi.org/10.1126/science.1171245Google Scholar
  8. [8]
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706–710 (2009). http://dx.doi.org/10.1038/nature07719Google Scholar
  9. [9]
    Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat. Nanotech. 3, 563–568 (2008). http://dx.doi.org/10.1038/nnano.2008.215Google Scholar
  10. [10]
    H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville and I. A. J. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem. B 110(17), 8535–8539 (2006). http://dx.doi.org/10.1021/jp060936fGoogle Scholar
  11. [11]
    S. Niyogi, E. Bekyarova, M. E. Itikis, J. L. McWilliams, M. A. Hammon and R. C. Haddon, “Solution properties of graphite and graphene”, J. Am. Chem. Soc. 128(24), 7720–7721 (2006). http://dx.doi.org/10.1021/ja060680rGoogle Scholar
  12. [12]
    M. Zhou, Y. M. Zhai and S. J. Dong, “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide”, Anal. Chem. 81(14), 5603–5613 (2009). http://dx.doi.org/10.1021/ac900136zGoogle Scholar
  13. [13]
    H. Bi, S. Sun, F. Huang, X. Xieb and M. Jiang, “Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications”, J. Mater. Chem. 22, 411–416 (2012). http://dx.doi.org/10.1039/c1jm14778aGoogle Scholar
  14. [14]
    W. Choi and J-W. Lee, “Graphene: Synthesis and Applications”, CRC Press, Taylor & Francis group, 2012. ISBN: 978-1-4398-6187-5.Google Scholar
  15. [15]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene”, Nature 438, 197–200 (2005). http://dx.doi.org/10.1038/nature04233Google Scholar
  16. [16]
    X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia”, Science 324(5928), 768–771 (2009). http://dx.doi.org/10.1126/science.1170335Google Scholar
  17. [17]
    Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, “Nitrogen-doped graphene and its electrochemical applications”, J. Mater. Chem. 20, 7491–7496 (2010). http://dx.doi.org/10.1039/c0jm00782jGoogle Scholar
  18. [18]
    X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Lett. 8(1), 323–327 (2008). http://dx.doi.org/10.1021/nl072838rGoogle Scholar
  19. [19]
    D. Kim, D. Lee, Y. Lee and D. Y. Jeon, “Work-function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes”, Adv. Funct. Mater. 23(40), 5049–5055 (2013). http://dx.doi.org/10.1002/adfm201301386Google Scholar
  20. [20]
    J. Ha, S. Park, D. Kim, J. Ryu, C. Lee, B. H. Hong and Y. Hong, “High-performance polymer light emitting diodes with interface-engineered graphene anodes”, Organic Electronics 14(9), 2324–2330 (2013). http://dx.doi.org/10.1016/j.orgel.2013.05.033Google Scholar
  21. [21]
    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science 307(5709), 538–544 (2005). http://dx.doi.org/10.1126/science.1104274Google Scholar
  22. [22]
    B. D. Zdravkov, J. J. Cermak, M. Sefara and J. Jank, “Pore classification in the characterization of porous materials: a perspective”, Cent. Eur. J. Chem. 5(2), 385–395 (2007). http://dx.doi.org/10.2478/s11532-007-0017-9Google Scholar
  23. [23]
    C. Liang, Z. Li and S. Dai, “Mesoporous carbon materials: synthesis and modification”, Angew Chem. Int. Ed. 47, 3696–3717 (2008). http://dx.doi.org/10.1002/anie.200702046Google Scholar
  24. [24]
    T. Kyotani,“Control of pore structure in carbon”, Carbon 38(2), 269–286 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00142-6Google Scholar
  25. [25]
    C. R. Bansal, J. B. Donnet and F. Stoeckl, “Active carbon”, Marcel Dekker, New York, pp.482 (1988).Google Scholar
  26. [26]
    J. S. Bunch, S. S Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, “Impermeable atomic membranes from graphene sheets”, Nano Lett. 8(8), 2458–2462, (2008). http://dx.doi.org/10.1021/nl801457bGoogle Scholar
  27. [27]
    S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine and G. Seifert, “Graphene nanostructures as tunable storage media for molecular hydrogen”, Proc. Natl. Acad. Sci. 102, 10439–10444 (2005). http://dx.doi.org/10.1073/pnas.0501030102Google Scholar
  28. [28]
    S. P. Koenig, L. Wang, J. Pellegrino and J. S. Bunch, “Selective molecular sieving through porous graphene”, Nat. Nanotech. 7, 728–732, (2012). http://dx.doi.org/10.1038/nnano.2012.162Google Scholar
  29. [29]
    D. Jiang, V. R. Cooper and S. Dai, “Porous graphene as the ultimate membrane for gas separation”, Nano Lett. 9(12), 4019–4024 (2009). http://dx.doi.org/10.1021/nl9021946Google Scholar
  30. [30]
    J. Zhu, D. Yang, X. Rui, D. Sim, H. Yu, H. E. Hoster, P. M. Ajayan and Q. Yan, “Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance”, Small 9(20), 3390–3397 (2013). http://dx.doi.org/10.1002/smll.201300755Google Scholar
  31. [31]
    Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan, “Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries”, Chem. Commun. 48, 10663–10665 (2012). http://dx.doi.org/10.1039/c2cc36234aGoogle Scholar
  32. [32]
    A. Du, Z. Zhu and S. C. Smith, “Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations”, J. Am. Chem. Soc. 132(9), 2876–2877 (2010). http://dx.doi.org/10.1021/ja100156dGoogle Scholar
  33. [33]
    J. Bai, X. Zhong, S. Jiang, Y. Huang and X. Duan, “Graphene nanomesh”, Nat. Nanotech. 5, 190–194 (2010). http://dx.doi.org/10.1038/nnano.2010.8Google Scholar
  34. [34]
    M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen and R. Fasel, “Porous graphenes: two-dimensional polymer synthesis with atomic precision”, Chem. Commun. 45, 6919–6921 (2009). http://dx.doi.org/10.1039/b915190gGoogle Scholar
  35. [35]
    Y. Li, Z. Zhou, P. Shena and Z. Chen, “Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane”, Chem. Commun. 46, 3672–3674 (2010). http://dx.doi.org/10.1039/b926313fGoogle Scholar
  36. [36]
    W. Frank, D. M. Tanenbaum, A. M. Van der Zande and P. L. McEuen, “Mechanical properties of suspended graphene sheets”, J. Vac. Sci. Technol. B 25, 2558–2561 (2007). http://dx.doi.org/10.1116/1.2789446Google Scholar
  37. [37]
    C. Lee, X. Wei, J.W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385–388 (2008). http://dx.doi.org/10.1126/science.1157996Google Scholar
  38. [38]
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett. 8(3), 902–907 (2008). http://dx.doi.org/10.1021/nl0731872Google Scholar
  39. [39]
    C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair and A. K. Geim, “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano 4(4), 1889–1892 (2010). http://dx.doi.org/10.1021/nn9016229Google Scholar
  40. [40]
    W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical”, Nano Lett. 10(5), 1645–1651 (2010). http://dx.doi.org/10.1021/nl9041966Google Scholar
  41. [41]
    H. W. Ha, A. Choudhury, T. Kamal, D.-H. Kim and S.-Y. Park, “Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites”, ACS Appl. Mater. Interfaces 4(9), 4623–4630, (2012). http://dx.doi.org/10.1021/am300999gGoogle Scholar
  42. [42]
    M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle and K. Schulte, “Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance”, Adv. Mater. 24(26), 3486–3490 (2012). http://dx.doi.org/10.1002/adma.201290158Google Scholar
  43. [43]
    S. Murali, J. R. Potts, S. Stoller, J. Park, M. D. Stoller, L. L. Zhang, Y. Zhu and R. S. Ruoff, “Preparation of activated graphene and effect of activation parameters on electrochemical capacitance”, Carbon 50, 3482–3485 (2012). http://dx.doi.org/10.1016/j.carbon.2012.03.014Google Scholar
  44. [44]
    L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu and Y. Chen, “Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors”, Scientific Reports 3, 1408–1417 (2013). http://dx.doi.org/10.1038/srep01408Google Scholar
  45. [45]
    H. Du, J. Li, J. Zhang, G. Su, X. Li and Y. Zhao, “Separation of hydrogen and nitrogen gases with porous graphene membrane”, J. Phys. Chem. C 115(47), 23261–23266 (2011). http://dx.doi.org/10.1021/jp206258uGoogle Scholar
  46. [46]
    J. Schrier, “Helium separation using porous graphene membranes”, J. Phys. Chem. Lett. 1(15), 2284–2287 (2010). http://dx.doi.org/10.1021/jz100748xGoogle Scholar
  47. [47]
    W. Hauser and P. Schwerdtfeger, “Nanoporous graphene membranes for efficient 3He/4He separation”, J. Phys. Chem. Lett. 3(2), 209–213 (2012). http://dx.doi.org/10.1021/jz201504kGoogle Scholar
  48. [48]
    S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C. A. Pignedoli and D. Passerone, “Porous graphene as an atmospheric nanofilter”, Small 6(20), 2266–2271 (2010). http://dx.doi.org/10.1002/smll.201090068Google Scholar
  49. [49]
    J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu and J.-G. Zhang, “Hierarchically porous graphene as a Lithium-air battery electrode”, Nano Lett. 11(11), 5071–5078 (2011). http://dx.doi.org/10.1021/nl203332eGoogle Scholar
  50. [50]
    J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, “Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density”, Adv. Funct. Mater. 22(12), 2632–2641 (2012). http://dx.doi.org/10.1002/adfm.201102839Google Scholar
  51. [51]
    J. Zhao, W. Ren and H.-M. Cheng, “Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations”, J. Mater. Chem. 22, 20197–20202 (2012). http://dx.doi.org/10.1039/c2jm34128jGoogle Scholar
  52. [52]
    H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun and R. S. Ruoff, “Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents”, Adv. Funct. Mater. 22(21), 4421–4425 (2012). http://dx.doi.org/10.1002/adfm.201200888Google Scholar
  53. [53]
    R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekær, “Band gap opening in graphene induced by patterned hydrogen adsorption”, Nat. Mater. 9, 315–319 (2010). http://dx.doi.org/10.1038/nmat2710Google Scholar
  54. [54]
    F. Cervantes-Sodi, G. Csanyi, S. Piscanec and A. C Ferrari, “Edge functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties”, Phys. Rev. B 77(16), 165427–165439 (2008). http://dx.doi.org/10.1103/PhysRevB.77.165427Google Scholar
  55. [55]
    M. Vanevic, M. S. Stojanovic and M. Kindermann, “Character of electronic states in graphene antidot lattices: flat bands and spatial localization”, Phys. Rev. B 80(4), 045410–045417 (2009). http://dx.doi.org/10.1103/PhysRevB.80.045410Google Scholar
  56. [56]
    M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, “Ab initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases”, J. Phys. Chem. C 117(5), 2222–2229 (2013). http://dx.doi.org/10.1021/jp3103436Google Scholar
  57. [57]
    G. Brunetto, P. A. S. Autreto, L. D. Machado, B. I. Santos, R. P. B. dos Santos, D. S. Galvão, “A nonzero gap two-dimensional carbon allotrope from porous graphene”, J. Phys. Chem. C 116(23), 12810–12813 (2012). http://dx.doi.org/10.1021/jp211300nGoogle Scholar
  58. [58]
    Y. Matsuda, J. Tahir-Kheli and W. A. III Goddard, “Definitive band gaps for single-wall carbon nanotubes”, J. Phys. Chem. Lett. 1(19), 2946 (2010). http://dx.doi.org/10.1021/jz100889uGoogle Scholar
  59. [59]
    M. D. Fischbein and M. Drndic, “Electron beam nanosculpting of suspended graphene sheets”, Appl. Phys. Lett. 93(11), 113107–113109 (2008). http://dx.doi.org/10.1063/1.2980518Google Scholar
  60. [60]
    D. Fox, A. O’Neill, D. Zhou, M. Boese, J. N. Coleman and H. Z. Zhang, “Nitrogen assisted etching of grapheme layers in a scanning electron microscope”, Appl. Phys. Lett. 98(24), 243117–243119 (2011). http://dx.doi.org/10.1063/1.3601467Google Scholar
  61. [61]
    Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng and T. Wei, “Easy synthesis of porous graphene nanosheets and their use in supercapacitors”, Carbon 50, 1699–1712 (2012). http://dx.doi.org/10.1016/j.carbon.2011.12.016Google Scholar
  62. [62]
    W. S. Hummers and R. E Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc. 80(6), 1339 (1958). http://dx.doi.org/10.1021/ja01539a017Google Scholar
  63. [63]
    M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara and Y. Matsumoto, “Photochemical engineering of graphene oxide nanosheets”, J. Phys. Chem. C 116(37), 19822–19827 (2012). http://dx.doi.org/10.1021/jp305403rGoogle Scholar
  64. [64]
    P. Russo, A. Hu, G. Compagnini, W. W. Dule and N. Y. Zhou. Submitted to Nanoscale.Google Scholar
  65. [65]
    H. O. Jeschke, M. E. Garcia and K. H. Bennemann, “Theory for the ultrafast ablation of graphite films”, Phys. Rev. Lett. 87(1), 015003–015006 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.015003Google Scholar
  66. [66]
    Y. Miyamoto, H. Zhang and D. Tománek, “Photoexfoliation of graphene from graphite: an Ab initio study”, Phys. Rev. Lett. 104(20), 208302–208307 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.208302Google Scholar
  67. [67]
    L. D. Smoot and P. J. Smith, “Coal combustion and gasification: gasification of coal in practical flames”, Plenum Press: New York, 151–162 (1985).Google Scholar
  68. [68]
    D. Fan, Y. Liu, J. He, Y. Zhou and Y. Yang, “Porous graphene-based materials by thermolytic cracking”, J. Mater. Chem. 22, 1396–1402 (2012). http://dx.doi.org/10.1039/c1jm13947aGoogle Scholar
  69. [69]
    Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe and S. Amano, “Photoreaction of graphene oxide nanosheets in water”, J. Phys. Chem. C 115(39), 19280–19286 (2011). http://dx.doi.org/10.1021/jp206348sGoogle Scholar
  70. [70]
    M. Lotya, P. J. King, U. Khan, S. De and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions”, ACS Nano 4(6), 3155–3162 (2010). http://dx.doi.org/10.1021/nn1005304Google Scholar
  71. [71]
    J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, “One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light”, New J. Chem. 36, 97–101 (2012). http://dx.doi.org/10.1039/c1nj20658cGoogle Scholar
  72. [72]
    K. Sint, B. Wang and P. Kral, “Selective ion passage through functionalized graphene nanopores”, J. Am. Chem. Soc. 130(49), 16448–16449 (2008). http://dx.doi.org/10.1021/ja804409fGoogle Scholar
  73. [73]
    H. Liu, S. Dai and D. Jiang, “Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics”, Nanoscale 5, 9984–9987 (2013). http://dx.doi.org/10.1039/c3nr02852fGoogle Scholar
  74. [74]
    H. Liu, S. Dai and D. Jiang, “Permeance of H2 through porous graphene from molecular dynamics”, Solid State Commun. In press (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.004Google Scholar
  75. [75]
    H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H. B. Park, “Selective gas transport through few-layered graphene and graphene oxide membranes”, Science 342, 91–95 (2013). http://dx.doi.org/10.1126/science.1236098Google Scholar
  76. [76]
    H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao and M. Yu, “Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation”, Science 342, 95–98 (2013). http://dx.doi.org/10.1126/science.1236686Google Scholar
  77. [77]
    S.-M. Paek, E. Yoo and I. Honma, “Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure”, Nano Lett. 9(1), 72–75 (2009). http://dx.doi.org/10.1126/science.1236686Google Scholar
  78. [78]
    M. Liang and L. Zhi, “Graphene-based electrode materials for rechargeable lithium batteries”, J. Mater. Chem. 19, 5871–5878 (2009). http://dx.doi.org/10.1039/b901551eGoogle Scholar
  79. [79]
    M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414, 359–367 (2001). http://dx.doi.org/10.1038/35104644Google Scholar
  80. [80]
    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material”, Science 276(5317), 1395–1397 (1997). http://dx.doi.org/10.1126/science.276.5317.1395Google Scholar
  81. [81]
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode-materials for lithium-ion batteries”, Nature 407, 496–499 (2000). http://dx.doi.org/10.1038/35035045Google Scholar
  82. [82]
    G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn and K. Kim, “Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries”, J. Mater. Chem. 19, 8378–8384 (2009). http://dx.doi.org/10.1039/b914650dGoogle Scholar
  83. [83]
    E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo and I. Honma, “Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries”, Nano Lett. 8(8), 2277–2282 (2008). http://dx.doi.org/10.1021/nl800957bGoogle Scholar
  84. [84]
    T. Takamura, K. Endo, L. Fu, Y. Wu, K. J. Lee and T. Matsumoto, “Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes”, Electrochim. Acta 53(3), 1055–1061 (2007). http://dx.doi.org/10.1016/j.electacta.2007.03.052Google Scholar
  85. [85]
    G. Zhang, D. Wang, W. Xu, J. Xiao and R. E. Williford, “Ambient operation of Li/air batteries”, J. Power Sources 195(3), 4332–4337 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.022Google Scholar
  86. [86]
    J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger and D. Foster, “Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery”, J. Electrochem. Soc. 150(10), 1351–1356 (2003). http://dx.doi.org/10.1149/1.1606454Google Scholar
  87. [87]
    A. Débart, A. J. Paterson, J. Bao and P. G. Bruce, “a-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries”, Angew. Chem. 120(24), 4597–4600 (2008). http://dx.doi.org/10.1002/ange.200705648Google Scholar
  88. [88]
    J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed and A. Kojic, “A critical review of Li/air batteries”, J. Electrochem. Soc. 159(2), 1–30 (2012). http://dx.doi.org/10.1149/2.086202jesGoogle Scholar
  89. [89]
    P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater. 7, 845–854 (2008). http://dx.doi.org/10.1038/nmat2297Google Scholar
  90. [90]
    A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources 91(1), 37–50 (2000). http://dx.doi.org/10.1016/S0378-7753 (00)00485-7Google Scholar
  91. [91]
    E. Conway, V. Birss and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources 66(1–2), 1–14 (1997). http://dx.doi.org/10.1016/S0378-7753(96)02474-3Google Scholar
  92. [92]
    H. Wang, Y. Liang, T. Mirfakhari, Z. Chen, H. S. Casalongue and H. Dai, “Advanced asymmetrical supercapacitors based on graphene hybrid materials”, Nano Res. 4(8), 729–736 (2011). http://dx.doi.org/10.1007/s12274-011-0129-6Google Scholar
  93. [93]
    E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon 39(6), 937–950 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00183-4Google Scholar
  94. [94]
    M. Endo, T. Takeda, Y. J. Kim, K. Koshiba and K. Ishii, “High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons”, Carbon Science 1(3–4), 117–128 (2001).Google Scholar
  95. [95]
    D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources 74(1), 99–107 (1998). http://dx.doi.org/10.1016/S0378-7753(98)00038-XGoogle Scholar
  96. [96]
    J. P. Zheng, P. J. Cygan and T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc. 142(8), 2699–2703 (1995). http://dx.doi.org/10.1149/1.2050077Google Scholar
  97. [97]
    D. Yu and L. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors”, J. Phys. Chem. Lett. 1(2), 467–470 (2009). http://dx.doi.org/10.1021/jz9003137Google Scholar
  98. [98]
    K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Adv. Funct. Mater. 11(5), 387–392 (2001). http://dx.doi.org/10.1002/1616-3028 (200110)11:5<387::AID-ADFM387>3.3.CO;2-7Google Scholar
  99. [99]
    D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, “Graphene-based ultracapacitors”, Nano Lett. 8(10), 3498–3502 (2008). http://dx.doi.org/10.1021/nl802558yGoogle Scholar
  100. [100]
    Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner and R. S. Ruoff, “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors”, Carbon 48(7), 2118–2122 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001Google Scholar
  101. [101]
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor devices based on graphene materials”, J. Phys. Chem. C 113(30), 13103–13107 (2009). http://dx.doi.org/10.1021/jp902214fGoogle Scholar
  102. [102]
    B. Fuertes, F. Pico and J. M. Rojo, “Influence of pore structure on electric double-layer capacitance of template mesoporous carbons”, J. Power Sources 133(2), 329–336 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.02.013Google Scholar
  103. [103]
    C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density”, Nano Lett. 1(12), 4863–4868 (2010). http://dx.doi.org/10.1021/nl102661q
  104. [104]
    L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem. 20, 5983–5992 (2010). http://dx.doi.org/10.1039/c000417kGoogle Scholar
  105. [105]
    L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors”, Nano Lett. 12(4), 1806–1812 (2012). http://dx.doi.org/10.1021/nl203903zGoogle Scholar
  106. [106]
    Y. Han, B. Oyilmaz, Y. Zhang and P. Kim.Energy, “Band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett. 98(20), 206805–206808 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805Google Scholar
  107. [107]
    B. Z. Jiang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review”, J. Mater. Sci. 43, 5092–5101 (2008). http://dx.doi.org/10.1007/s10853-008-2755-2Google Scholar
  108. [108]
    H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, “P25-graphene composite as a high performance photocatalyst”, ACS Nano 4(1), 380–386 (2010). http://dx.doi.org/10.1021/nn901221kGoogle Scholar
  109. [109]
    X. Y. Zhang, H. P. Li, X. L. Cui and Y. Lin, “Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting”, J. Mater. Chem. 20, 2801–2806 (2010). http://dx.doi.org/10.1039/b917240hGoogle Scholar
  110. [110]
    G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, “TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants”, Carbon 49(8), 2693–2701 (2011). http://dx.doi.org/10.1016/j.carbon.2011.02.059Google Scholar
  111. [111]
    V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, “TiO2-graphene oxide nanocomposite as advanced photocatalytic materials”, Chem. Centr. J. 7, 41–53 (2013). http://dx.doi.org/10.1186/1752-153X-7-41Google Scholar
  112. [112]
    A. Hu, P. Peng, H. Alarifi, X. Y. Zhang, J. Y. Guo, Y. Zhou and W. W. Duley, “Femtosecond laser welded nanostructures and plasmonic devices”, J. Laser Appl. 24(4), 042001–7 (2012). http://dx.doi.org/10.2351/1.3695174Google Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2013

Authors and Affiliations

  • Paola Russo
    • 1
    • 2
    • 3
  • Anming Hu
    • 1
    • 3
    Email author
  • Giuseppe Compagnini
    • 2
  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWest WaterlooCanada
  2. 2.Dipartimento di Scienze ChimicheUniversità degliStudi di CataniaCataniaItaly
  3. 3.Institute of Laser TechnologyBeijing University of TechnologyBeijingP. R. China

Personalised recommendations