Nano-Micro Letters

, Volume 5, Issue 4, pp 260–273 | Cite as

Synthesis, Properties and Potential Applications of Porous Graphene: A Review

  • Paola Russo
  • Anming HuEmail author
  • Giuseppe Compagnini
Open Access


Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.


Graphene Porous graphene Gas separation Energy storage 


  1. [1]
    A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, 183–191 (2007). Scholar
  2. [2]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov “Electric field effect in atomically thin carbon films”, Science 306, 666–669 (2004). Scholar
  3. [3]
    T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the electronic structure of bilayer graphene”, Science 313, 951–954 (2006). Scholar
  4. [4]
    L. Kane and E. J. Mele, “Quantum spin hall effect in graphene”, Phys. Rev. Lett. 95(22), 226801–4 (2005). Scholar
  5. [5]
    M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber and F. Giunea, “Local defects and ferromagnetism in graphene layers”, Phys. Rev. B 72(15), 155121–5 (2005). Scholar
  6. [6]
    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett. 9(1), 30–35 (2009). Scholar
  7. [7]
    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324(5932), 1312–1314 (2009). Scholar
  8. [8]
    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706–710 (2009). Scholar
  9. [9]
    Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat. Nanotech. 3, 563–568 (2008). Scholar
  10. [10]
    H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville and I. A. J. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem. B 110(17), 8535–8539 (2006). Scholar
  11. [11]
    S. Niyogi, E. Bekyarova, M. E. Itikis, J. L. McWilliams, M. A. Hammon and R. C. Haddon, “Solution properties of graphite and graphene”, J. Am. Chem. Soc. 128(24), 7720–7721 (2006). Scholar
  12. [12]
    M. Zhou, Y. M. Zhai and S. J. Dong, “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide”, Anal. Chem. 81(14), 5603–5613 (2009). Scholar
  13. [13]
    H. Bi, S. Sun, F. Huang, X. Xieb and M. Jiang, “Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications”, J. Mater. Chem. 22, 411–416 (2012). Scholar
  14. [14]
    W. Choi and J-W. Lee, “Graphene: Synthesis and Applications”, CRC Press, Taylor & Francis group, 2012. ISBN: 978-1-4398-6187-5.Google Scholar
  15. [15]
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene”, Nature 438, 197–200 (2005). Scholar
  16. [16]
    X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia”, Science 324(5928), 768–771 (2009). Scholar
  17. [17]
    Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, “Nitrogen-doped graphene and its electrochemical applications”, J. Mater. Chem. 20, 7491–7496 (2010). Scholar
  18. [18]
    X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Lett. 8(1), 323–327 (2008). Scholar
  19. [19]
    D. Kim, D. Lee, Y. Lee and D. Y. Jeon, “Work-function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes”, Adv. Funct. Mater. 23(40), 5049–5055 (2013). Scholar
  20. [20]
    J. Ha, S. Park, D. Kim, J. Ryu, C. Lee, B. H. Hong and Y. Hong, “High-performance polymer light emitting diodes with interface-engineered graphene anodes”, Organic Electronics 14(9), 2324–2330 (2013). Scholar
  21. [21]
    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science 307(5709), 538–544 (2005). Scholar
  22. [22]
    B. D. Zdravkov, J. J. Cermak, M. Sefara and J. Jank, “Pore classification in the characterization of porous materials: a perspective”, Cent. Eur. J. Chem. 5(2), 385–395 (2007). Scholar
  23. [23]
    C. Liang, Z. Li and S. Dai, “Mesoporous carbon materials: synthesis and modification”, Angew Chem. Int. Ed. 47, 3696–3717 (2008). Scholar
  24. [24]
    T. Kyotani,“Control of pore structure in carbon”, Carbon 38(2), 269–286 (2000). Scholar
  25. [25]
    C. R. Bansal, J. B. Donnet and F. Stoeckl, “Active carbon”, Marcel Dekker, New York, pp.482 (1988).Google Scholar
  26. [26]
    J. S. Bunch, S. S Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, “Impermeable atomic membranes from graphene sheets”, Nano Lett. 8(8), 2458–2462, (2008). Scholar
  27. [27]
    S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine and G. Seifert, “Graphene nanostructures as tunable storage media for molecular hydrogen”, Proc. Natl. Acad. Sci. 102, 10439–10444 (2005). Scholar
  28. [28]
    S. P. Koenig, L. Wang, J. Pellegrino and J. S. Bunch, “Selective molecular sieving through porous graphene”, Nat. Nanotech. 7, 728–732, (2012). Scholar
  29. [29]
    D. Jiang, V. R. Cooper and S. Dai, “Porous graphene as the ultimate membrane for gas separation”, Nano Lett. 9(12), 4019–4024 (2009). Scholar
  30. [30]
    J. Zhu, D. Yang, X. Rui, D. Sim, H. Yu, H. E. Hoster, P. M. Ajayan and Q. Yan, “Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance”, Small 9(20), 3390–3397 (2013). Scholar
  31. [31]
    Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan, “Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries”, Chem. Commun. 48, 10663–10665 (2012). Scholar
  32. [32]
    A. Du, Z. Zhu and S. C. Smith, “Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations”, J. Am. Chem. Soc. 132(9), 2876–2877 (2010). Scholar
  33. [33]
    J. Bai, X. Zhong, S. Jiang, Y. Huang and X. Duan, “Graphene nanomesh”, Nat. Nanotech. 5, 190–194 (2010). Scholar
  34. [34]
    M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen and R. Fasel, “Porous graphenes: two-dimensional polymer synthesis with atomic precision”, Chem. Commun. 45, 6919–6921 (2009). Scholar
  35. [35]
    Y. Li, Z. Zhou, P. Shena and Z. Chen, “Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane”, Chem. Commun. 46, 3672–3674 (2010). Scholar
  36. [36]
    W. Frank, D. M. Tanenbaum, A. M. Van der Zande and P. L. McEuen, “Mechanical properties of suspended graphene sheets”, J. Vac. Sci. Technol. B 25, 2558–2561 (2007). Scholar
  37. [37]
    C. Lee, X. Wei, J.W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385–388 (2008). Scholar
  38. [38]
    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett. 8(3), 902–907 (2008). Scholar
  39. [39]
    C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair and A. K. Geim, “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano 4(4), 1889–1892 (2010). Scholar
  40. [40]
    W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical”, Nano Lett. 10(5), 1645–1651 (2010). Scholar
  41. [41]
    H. W. Ha, A. Choudhury, T. Kamal, D.-H. Kim and S.-Y. Park, “Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites”, ACS Appl. Mater. Interfaces 4(9), 4623–4630, (2012). Scholar
  42. [42]
    M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle and K. Schulte, “Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance”, Adv. Mater. 24(26), 3486–3490 (2012). Scholar
  43. [43]
    S. Murali, J. R. Potts, S. Stoller, J. Park, M. D. Stoller, L. L. Zhang, Y. Zhu and R. S. Ruoff, “Preparation of activated graphene and effect of activation parameters on electrochemical capacitance”, Carbon 50, 3482–3485 (2012). Scholar
  44. [44]
    L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu and Y. Chen, “Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors”, Scientific Reports 3, 1408–1417 (2013). Scholar
  45. [45]
    H. Du, J. Li, J. Zhang, G. Su, X. Li and Y. Zhao, “Separation of hydrogen and nitrogen gases with porous graphene membrane”, J. Phys. Chem. C 115(47), 23261–23266 (2011). Scholar
  46. [46]
    J. Schrier, “Helium separation using porous graphene membranes”, J. Phys. Chem. Lett. 1(15), 2284–2287 (2010). Scholar
  47. [47]
    W. Hauser and P. Schwerdtfeger, “Nanoporous graphene membranes for efficient 3He/4He separation”, J. Phys. Chem. Lett. 3(2), 209–213 (2012). Scholar
  48. [48]
    S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C. A. Pignedoli and D. Passerone, “Porous graphene as an atmospheric nanofilter”, Small 6(20), 2266–2271 (2010). Scholar
  49. [49]
    J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu and J.-G. Zhang, “Hierarchically porous graphene as a Lithium-air battery electrode”, Nano Lett. 11(11), 5071–5078 (2011). Scholar
  50. [50]
    J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, “Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density”, Adv. Funct. Mater. 22(12), 2632–2641 (2012). Scholar
  51. [51]
    J. Zhao, W. Ren and H.-M. Cheng, “Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations”, J. Mater. Chem. 22, 20197–20202 (2012). Scholar
  52. [52]
    H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun and R. S. Ruoff, “Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents”, Adv. Funct. Mater. 22(21), 4421–4425 (2012). Scholar
  53. [53]
    R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekær, “Band gap opening in graphene induced by patterned hydrogen adsorption”, Nat. Mater. 9, 315–319 (2010). Scholar
  54. [54]
    F. Cervantes-Sodi, G. Csanyi, S. Piscanec and A. C Ferrari, “Edge functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties”, Phys. Rev. B 77(16), 165427–165439 (2008). Scholar
  55. [55]
    M. Vanevic, M. S. Stojanovic and M. Kindermann, “Character of electronic states in graphene antidot lattices: flat bands and spatial localization”, Phys. Rev. B 80(4), 045410–045417 (2009). Scholar
  56. [56]
    M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, “Ab initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases”, J. Phys. Chem. C 117(5), 2222–2229 (2013). Scholar
  57. [57]
    G. Brunetto, P. A. S. Autreto, L. D. Machado, B. I. Santos, R. P. B. dos Santos, D. S. Galvão, “A nonzero gap two-dimensional carbon allotrope from porous graphene”, J. Phys. Chem. C 116(23), 12810–12813 (2012). Scholar
  58. [58]
    Y. Matsuda, J. Tahir-Kheli and W. A. III Goddard, “Definitive band gaps for single-wall carbon nanotubes”, J. Phys. Chem. Lett. 1(19), 2946 (2010). Scholar
  59. [59]
    M. D. Fischbein and M. Drndic, “Electron beam nanosculpting of suspended graphene sheets”, Appl. Phys. Lett. 93(11), 113107–113109 (2008). Scholar
  60. [60]
    D. Fox, A. O’Neill, D. Zhou, M. Boese, J. N. Coleman and H. Z. Zhang, “Nitrogen assisted etching of grapheme layers in a scanning electron microscope”, Appl. Phys. Lett. 98(24), 243117–243119 (2011). Scholar
  61. [61]
    Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng and T. Wei, “Easy synthesis of porous graphene nanosheets and their use in supercapacitors”, Carbon 50, 1699–1712 (2012). Scholar
  62. [62]
    W. S. Hummers and R. E Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc. 80(6), 1339 (1958). Scholar
  63. [63]
    M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara and Y. Matsumoto, “Photochemical engineering of graphene oxide nanosheets”, J. Phys. Chem. C 116(37), 19822–19827 (2012). Scholar
  64. [64]
    P. Russo, A. Hu, G. Compagnini, W. W. Dule and N. Y. Zhou. Submitted to Nanoscale.Google Scholar
  65. [65]
    H. O. Jeschke, M. E. Garcia and K. H. Bennemann, “Theory for the ultrafast ablation of graphite films”, Phys. Rev. Lett. 87(1), 015003–015006 (2001). Scholar
  66. [66]
    Y. Miyamoto, H. Zhang and D. Tománek, “Photoexfoliation of graphene from graphite: an Ab initio study”, Phys. Rev. Lett. 104(20), 208302–208307 (2010). Scholar
  67. [67]
    L. D. Smoot and P. J. Smith, “Coal combustion and gasification: gasification of coal in practical flames”, Plenum Press: New York, 151–162 (1985).Google Scholar
  68. [68]
    D. Fan, Y. Liu, J. He, Y. Zhou and Y. Yang, “Porous graphene-based materials by thermolytic cracking”, J. Mater. Chem. 22, 1396–1402 (2012). Scholar
  69. [69]
    Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe and S. Amano, “Photoreaction of graphene oxide nanosheets in water”, J. Phys. Chem. C 115(39), 19280–19286 (2011). Scholar
  70. [70]
    M. Lotya, P. J. King, U. Khan, S. De and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions”, ACS Nano 4(6), 3155–3162 (2010). Scholar
  71. [71]
    J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, “One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light”, New J. Chem. 36, 97–101 (2012). Scholar
  72. [72]
    K. Sint, B. Wang and P. Kral, “Selective ion passage through functionalized graphene nanopores”, J. Am. Chem. Soc. 130(49), 16448–16449 (2008). Scholar
  73. [73]
    H. Liu, S. Dai and D. Jiang, “Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics”, Nanoscale 5, 9984–9987 (2013). Scholar
  74. [74]
    H. Liu, S. Dai and D. Jiang, “Permeance of H2 through porous graphene from molecular dynamics”, Solid State Commun. In press (2013). Scholar
  75. [75]
    H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H. B. Park, “Selective gas transport through few-layered graphene and graphene oxide membranes”, Science 342, 91–95 (2013). Scholar
  76. [76]
    H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao and M. Yu, “Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation”, Science 342, 95–98 (2013). Scholar
  77. [77]
    S.-M. Paek, E. Yoo and I. Honma, “Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure”, Nano Lett. 9(1), 72–75 (2009). Scholar
  78. [78]
    M. Liang and L. Zhi, “Graphene-based electrode materials for rechargeable lithium batteries”, J. Mater. Chem. 19, 5871–5878 (2009). Scholar
  79. [79]
    M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414, 359–367 (2001). Scholar
  80. [80]
    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material”, Science 276(5317), 1395–1397 (1997). Scholar
  81. [81]
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode-materials for lithium-ion batteries”, Nature 407, 496–499 (2000). Scholar
  82. [82]
    G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn and K. Kim, “Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries”, J. Mater. Chem. 19, 8378–8384 (2009). Scholar
  83. [83]
    E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo and I. Honma, “Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries”, Nano Lett. 8(8), 2277–2282 (2008). Scholar
  84. [84]
    T. Takamura, K. Endo, L. Fu, Y. Wu, K. J. Lee and T. Matsumoto, “Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes”, Electrochim. Acta 53(3), 1055–1061 (2007). Scholar
  85. [85]
    G. Zhang, D. Wang, W. Xu, J. Xiao and R. E. Williford, “Ambient operation of Li/air batteries”, J. Power Sources 195(3), 4332–4337 (2010). Scholar
  86. [86]
    J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger and D. Foster, “Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery”, J. Electrochem. Soc. 150(10), 1351–1356 (2003). Scholar
  87. [87]
    A. Débart, A. J. Paterson, J. Bao and P. G. Bruce, “a-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries”, Angew. Chem. 120(24), 4597–4600 (2008). Scholar
  88. [88]
    J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed and A. Kojic, “A critical review of Li/air batteries”, J. Electrochem. Soc. 159(2), 1–30 (2012). Scholar
  89. [89]
    P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater. 7, 845–854 (2008). Scholar
  90. [90]
    A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources 91(1), 37–50 (2000). (00)00485-7Google Scholar
  91. [91]
    E. Conway, V. Birss and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources 66(1–2), 1–14 (1997). Scholar
  92. [92]
    H. Wang, Y. Liang, T. Mirfakhari, Z. Chen, H. S. Casalongue and H. Dai, “Advanced asymmetrical supercapacitors based on graphene hybrid materials”, Nano Res. 4(8), 729–736 (2011). Scholar
  93. [93]
    E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon 39(6), 937–950 (2001). Scholar
  94. [94]
    M. Endo, T. Takeda, Y. J. Kim, K. Koshiba and K. Ishii, “High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons”, Carbon Science 1(3–4), 117–128 (2001).Google Scholar
  95. [95]
    D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources 74(1), 99–107 (1998). Scholar
  96. [96]
    J. P. Zheng, P. J. Cygan and T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc. 142(8), 2699–2703 (1995). Scholar
  97. [97]
    D. Yu and L. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors”, J. Phys. Chem. Lett. 1(2), 467–470 (2009). Scholar
  98. [98]
    K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Adv. Funct. Mater. 11(5), 387–392 (2001). (200110)11:5<387::AID-ADFM387>3.3.CO;2-7Google Scholar
  99. [99]
    D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, “Graphene-based ultracapacitors”, Nano Lett. 8(10), 3498–3502 (2008). Scholar
  100. [100]
    Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner and R. S. Ruoff, “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors”, Carbon 48(7), 2118–2122 (2010). Scholar
  101. [101]
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor devices based on graphene materials”, J. Phys. Chem. C 113(30), 13103–13107 (2009). Scholar
  102. [102]
    B. Fuertes, F. Pico and J. M. Rojo, “Influence of pore structure on electric double-layer capacitance of template mesoporous carbons”, J. Power Sources 133(2), 329–336 (2004). Scholar
  103. [103]
    C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density”, Nano Lett. 1(12), 4863–4868 (2010).
  104. [104]
    L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem. 20, 5983–5992 (2010). Scholar
  105. [105]
    L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors”, Nano Lett. 12(4), 1806–1812 (2012). Scholar
  106. [106]
    Y. Han, B. Oyilmaz, Y. Zhang and P. Kim.Energy, “Band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett. 98(20), 206805–206808 (2007). Scholar
  107. [107]
    B. Z. Jiang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review”, J. Mater. Sci. 43, 5092–5101 (2008). Scholar
  108. [108]
    H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, “P25-graphene composite as a high performance photocatalyst”, ACS Nano 4(1), 380–386 (2010). Scholar
  109. [109]
    X. Y. Zhang, H. P. Li, X. L. Cui and Y. Lin, “Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting”, J. Mater. Chem. 20, 2801–2806 (2010). Scholar
  110. [110]
    G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, “TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants”, Carbon 49(8), 2693–2701 (2011). Scholar
  111. [111]
    V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, “TiO2-graphene oxide nanocomposite as advanced photocatalytic materials”, Chem. Centr. J. 7, 41–53 (2013). Scholar
  112. [112]
    A. Hu, P. Peng, H. Alarifi, X. Y. Zhang, J. Y. Guo, Y. Zhou and W. W. Duley, “Femtosecond laser welded nanostructures and plasmonic devices”, J. Laser Appl. 24(4), 042001–7 (2012). Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2013

Authors and Affiliations

  • Paola Russo
    • 1
    • 2
    • 3
  • Anming Hu
    • 1
    • 3
    Email author
  • Giuseppe Compagnini
    • 2
  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWest WaterlooCanada
  2. 2.Dipartimento di Scienze ChimicheUniversità degliStudi di CataniaCataniaItaly
  3. 3.Institute of Laser TechnologyBeijing University of TechnologyBeijingP. R. China

Personalised recommendations