Advertisement

Nano-Micro Letters

, Volume 5, Issue 2, pp 117–123 | Cite as

Synthesis and Luminescence Properties of (Y, Gd) (P, V)O4:Eu3+, Bi3+Red Nano-phosphors with Enhanced Photoluminescence by Bi3+, Gd3+ Doping

  • Yong Pu
  • Ke Tang
  • Da-Chuan Zhu
  • Tao Han
  • Cong Zhao
  • Ling-Ling Peng
Open Access
Article

Abstract

A series of (Y1−y, Gd y )0.95−x(P y , V1−y)O4:0.05Eu3+, xBi3+ phosphors have been successfully prepared by a subsection method. The crystal structure, surface morphology and luminescence properties were investigated. It was found that the sintered samples crystallized in a tetragonal crystal system with space group I41/amd(a = b = 0.7119 nm, c = 0.6290 nm). The products presented rod-like morphology with length of 100–150 nm and width of 50–100 nm. A maximum peak at 619 nm (5D07F2) was observed in emission spectrum of the phosphors. It was also found that co-doping of Bi3+, P5+ and Gd3+ions into YVO4:Eu3+ can not only made the right edge of the excitation band shift to the long-wavelength region, but also increased the emission intensity at 619 nm sharply and decreased the lifetime of fluorescence decay. These results may expand the application scope of the phosphors.

Keywords

(Y, Gd)(P, V)O4:Eu3+,Bi3+ Rod-like Red phosphors Photoluminescence Doping 

References

  1. [1]
    K. N. Shinde, S. J. Dhoble and K. Park, “Effect of synthesis method on photolumin-escence properties of Na2Sr2Al2PO4Cl9:Ce3+ nanophosphor”, Nano-Micro Lett. 4(2), 78–82 (2012). http://dx.doi.org/10.3786/nml.v4i2.p78-82CrossRefGoogle Scholar
  2. [2]
    W. S. Song, K. H. Lee, Y. S. Kim and H. Yang, “Tuning of size and luminescence of red Y(V,P)O4:Eu nanophosphors for their application to transparent panels of plasma display”, Mater. Chem. Phys. 135(1), 51–57 (2012). http://dx.doi.org/10.1016/j.matchemphys.2012.04.013CrossRefGoogle Scholar
  3. [3]
    S. H. Dai, Y. F. Liu, Y. N. Lu and H. H. Min, “Microwave solvothermal synthesis of Eu3+-doped (Y, Gd)2O3 microsheets”, Powder Technol. 202(1–3), 178–184 (2010). http://dx.doi.org/10.1016/j.powtec.2010.04.036CrossRefGoogle Scholar
  4. [4]
    B. K. Grandhe, V. R. Bandi, K. Jang, S. Ramaprabhu, H. S. Lee, D. S. Shin, S. S. Yi and J. H. Jeong, “Multi wall carbon nanotubes assisted synthesis of YVO4:Eu3+ nanocomposites for display device applications”, Compos. Part B 43(1), 1192–1195 (2012). http://dx.doi.org/10.1016/j.compositesb.2011.08.011CrossRefGoogle Scholar
  5. [5]
    C. Jang, S. M. Lee and K. C. Choi, “Optical characteristics of YVO4:Eu3+ phosphor in close proximity to Ag nanofilm: emitting layer for mirror-type displays”, Opt. Express 20(3), 2143–2148 (2012). http://dx.doi.org/10.1364/OE.20.002143CrossRefGoogle Scholar
  6. [6]
    Y. S. Chang, Z. R. Shi, Y. Y. Tsai, S. Wuc and H. L. Chen, “The effect of Eu3+-activated InVO4 phosphors prepared by solgel method”, Opt. Mater. 33(3), 375–380 (2011). http://dx.doi.org/10.1016/j.optmat.2010.09.018CrossRefGoogle Scholar
  7. [7]
    N. Ogorodnikov, V. A. Pustovarov, V. M. Puzikov, V. I. Salo and A. P. Voronov, “A luminescence and absorption spectroscopy study of KH2PO4 crystals doped with Ti+ ions”, Opt. Mater. 34(9), 1522–1528 (2012). http://dx.doi.org/10.1016/j.optmat.2012.03.018CrossRefGoogle Scholar
  8. [8]
    C. Mu and J. H. He, “Synthesis and luminescence properties of Eu3+ doped porous YVO4 nanowires by chemical precipitation in nanochannels”, Mater. Res. Bull. 47(2), 491–496 (2012). http://dx.doi.org/10.1016/j.materresbull.2011.06.008CrossRefGoogle Scholar
  9. [9]
    X. Z. Xiao, G. Z. Lu, S. D. Shen, D. S. Mao, Y. Guo and Y. Q. Wang, “Synthesis and luminescence properties of YVO4:Eu3+ cobblestone-like microcrystalline phosphors obtained from the mixed solvent- thermal method”, Mater. Sci. Eng., B 176(1), 72–78 (2011). http://dx.doi.org/10.1016/j.mseb.2010.09.005CrossRefGoogle Scholar
  10. [10]
    J. H Li, J. Liu and X. B. Yu, “Synthesis and luminescence properties of Bi3+-doped YVO4 phosphors”, J. Alloys Compd. 509(41), 9897–9900 (2011). http://dx.doi.org/10.1016/j.jallcom.2011.07.079CrossRefGoogle Scholar
  11. [11]
    L. P. Xie, H. W. Song, Y. Wang, W. Xu, X. Bai and B. Dong, “Influence of concentration effect and Au coating on photoluminescence properties of YVO4:Eu3+ nanoparticle colloids”, J. Phys. Chem. C 114(21), 9975–9980 (2010). http://dx.doi.org/10.1021/jp100828tCrossRefGoogle Scholar
  12. [12]
    D. Hreniak, J. Doskocz, P. Gluchowski, R. Lisiecki, W. Strek, N. Vu, D. X. Loc, T. K. Anh, M. Bettinelli and A. Speghini, “Enhancement of luminescence properties of Eu3+:YVO4 in polymeric nanocomposites upon UV excitation”, J. Lumin. 131(3), 473–476 (2011). http://dx.doi.org/10.1016/j.jlumin.2010.10.028CrossRefGoogle Scholar
  13. [13]
    S. H. Choi, Y. M. Moon and H. K. Jung, “Luminescent properties of PEG-added nanocrystalline YVO4:Eu3+ phosphor prepared by a hydrothermal method”, J. Lumin. 130(4), 549–553 (2010). http://dx.doi.org/10.1016/j.jlumin.2009.10.029CrossRefGoogle Scholar
  14. [14]
    D. S. Jo, Y. Y. Luo, K. Senthil, T. Masaki and D. H. Yoon, “Synthesis of high efficient nanosized Y(V,P)O4:Eu3+ red phosphors by a new technique”, Opt. Mater. 33(8), 1190–1194 (2011). http://dx.doi.org/10.1016/j.optmat.2011.02.007CrossRefGoogle Scholar
  15. [15]
    Q. Z. Dong, Y. H. Wang, L. L. Peng, H. J. Zhang and B. T. Liu, “Controllable morphology and high photoluminescence of (Y, Gd)(V,P) O4:Eu3+ nanophosphors synthesized by two-step reactions”, Nanotechnol. 22(21), 215604–215611 (2011). http://dx.doi.org/10.1088/0957-4484/22/21/215604CrossRefGoogle Scholar
  16. [16]
    J. Wang, M. Hojamberdiev and Y. H. Xu, “CTABassisted hydrothermal synthesis of YVO4:Eu3+ powders in a wide pH range”, Solid State Sci. 14(1), 191–196 (2012). http://dx.doi.org/10.1016/j.solidstatesciences.2011.10.019CrossRefGoogle Scholar
  17. [17]
    K. Park and S. W. Nam, “VUV photoluminescence characteristics of (Y, Gd)VO4:Eu,Zn phosphors produced by ultrasonic spray pyrolysis”, Mater. Chem. Phys. 123(2–3), 601–605 (2010). http://dx.doi.org/10.1016/j.matchemphys.2010.05.021CrossRefGoogle Scholar
  18. [18]
    S. Takeshita, T. Watanabe, T. Isobe, T. Sawayama and S. Niikura, “Improvement of the photostability for YVO4:Bi3+,Eu3+ nanoparticles synthesized by the citrate route”, Opt. Mater. 33(3), 323–326 (2011). http://dx.doi.org/10.1016/j.optmat.2010.09.006CrossRefGoogle Scholar
  19. [19]
    J. Y. Sun, J. B. Xian, Z. G. Xia and H. Y. Du, “Synthesis, structure and luminescence properties of Y(V,P)O4:Eu3+,Bi3+ phosphors”, J. Lumin. 130(10), 1818–1824 (2010). http://dx.doi.org/10.1016/j.jlumin.2010.04.016CrossRefGoogle Scholar
  20. [20]
    Y. Y. Zuo, W. J. Ling and Y. H. Wang, “Synthesis and photoluminescence properties of YVO4:Eu3+, Al3+ phosphor”, J. Lumin. 132(1), 61–63 (2012). http://dx.doi.org/10.1016/j.jlumin.2011.07.012CrossRefGoogle Scholar
  21. [21]
    J. H. Shin, S. W. Choi, S. H. Hong, S. J. Kwon, S. Y. Seo, H. S. Kim, Y. H. Song and D. H. Yoon, “Luminescent properties of Y(P, V)O4:Eu3+ phosphors prepared by combining liquid phase precursor method and planetary ball milling”, J. Alloys Compd. 509(11), 4331–4335 (2011). http://dx.doi.org/10.1016/j.jallcom.2011.01.060CrossRefGoogle Scholar
  22. [22]
    Y. P. Fang, A. W. Xu, R. Q. Song, H. X. Zhang, L. P. You, J. C Yu and H. Q. Liu, “Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires”, J. Am. Chem. Soc. 125(51), 16025–16034 (2003). http://dx.doi.org/10.1021/ja037280dCrossRefGoogle Scholar
  23. [23]
    Y. C. Chen, Y. C. Wu, D. Y. Wang and T. M. Chen, “Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4:Bi3+,Eu3+ nanocrystals by a facile hydrothermal process”, J. Mater. Chem. 22(16), 7961–7969 (2012). http://dx.doi.org/10.1039/C2JM30756ACrossRefGoogle Scholar
  24. [24]
    C. C. Wu, K. B. Chen, C. S. Lee, T. M. Chen and B. M. Cheng, “Synthesis and VUV photoluminescence characterization of (Y, Gd)(V, P)O4:Eu3+ as a potential red-emitting PDP phosphor”, Chem. Mater. 19(13), 3278–3285 (2007). http://dx.doi.org/10.1021/cm061042aCrossRefGoogle Scholar
  25. [25]
    B. V. Rao and S. Buddhudu, “Emission analysis of RE3+ (Dy3+ or Tb3+):Ca3Ln(=Y, Gd)(VO4)3 powder phosphors”, Mater. Chem. Phys. 111(1), 65–68 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.03.013CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2013

Authors and Affiliations

  1. 1.College of Material Science and EngineeringSichuan UniversitySichuan ChengduChina
  2. 2.College of Information EngineeringChengdu University of TechnologySichuan ChengduChina
  3. 3.Chongqing Key Laboratory of Micro/Nano Materials Engineering and TechnologyChongqingChina

Personalised recommendations