Advertisement

Nano-Micro Letters

, Volume 4, Issue 2, pp 90–97 | Cite as

Preparation and Characterization of Freestanding Hierarchical Porous TiO2 Monolith Modified with Graphene Oxide

  • Lei Wan
  • Mingce Long
  • Dongying Zhou
  • Liying Zhang
  • Weimin Cai
Open Access
Article

Abstract

Catalyst recovery is one of the most important aspects that restrict the application of TiO2 photocatalyst. In order to reduce restrictions and improve the photocatalytic efficiency, a hierarchical porous TiO2 monolith (PTM) with well-defined macroporous and homogeneous mesoporous structure was prepared by using a sol-gel phase separation method. P123 was used as the mesoporous template and graphene oxide was applied to increase the activity and integrity of the monolithic TiO2. According to scanning electron microscopy and the Barrett-Joyner-Halenda measurements, PTM3 is mainly composed of 10 nm anatase crystallines with 3.6 nm mesopores and 2–8 μm macropores. Further characterization suggests carbon and nitrogen have been maintained in the PTM during calcinations so as to induce the visible light activity. The PTM with 0.07 wt% graphene oxide dosage shows high efficiency for methyl orange (MO) decolorization under both full spectrum and visible light irradiation (λ>400 nm). Besides, the monolith remains intact and has good photocatalytic stability after four cyclic experiments.

Keywords

Photocatalysis Titanium dioxide Porous monolith Graphene oxide 

References

  1. [1]
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004CrossRefGoogle Scholar
  2. [2]
    A. Fujishima, X. Zhang and D. A. Tryk, Surf. Sci. Rep. 63, 515 (2008). http://dx.doi.org/10.1016/j.surfrep.2008.10.001CrossRefGoogle Scholar
  3. [3]
    M. C. Long and W. M. Cai, Front. Chem. Chin. 6, 190 (2011). http://dx.doi.org/10.1007/s11458-011-0243-8CrossRefGoogle Scholar
  4. [4]
    J. G. Yu, H. G. Yu, C. H. Ao, S. C. Lee, J. C. Yu and W. K. Ho, Thin Solid Films 496, 273 (2006). http://dx.doi.org/10.1016/j.tsf.2005.08.352CrossRefGoogle Scholar
  5. [5]
    H. Han and R. B. Bai, Ind. Eng. Chem. Res. 50, 11922 (2011). http://dx.doi.org/10.1021/ie200787jCrossRefGoogle Scholar
  6. [6]
    D. D. Dionysiou, A. A. Burbano, M. T. Suidan, I. Baudin and J. M. Laine, Environ. Sci. Technol. 36, 3834 (2002). http://dx.doi.org/10.1021/es0113605CrossRefGoogle Scholar
  7. [7]
    N. J. Peill and M. R. Hoffmann, Environ. Sci. Technol. 30, 2806 (1996). http://dx.doi.org/10.1021/es960047dCrossRefGoogle Scholar
  8. [8]
    G. L. Puma, J. N. Khor and A. Brucato, Environ. Sci. Technol. 38, 3737 (2004). http://dx.doi.org/10.1021/es0301020CrossRefGoogle Scholar
  9. [9]
    C. Chen, W. M. Cai, M. C. Long, J. Y. Zhang, B. X. Zhou, Y. H. Wu and D. Y. Wu, J. Hazard. Mater. 178, 560 (2010). http://dx.doi.org/10.1016/j.jhazmat.2010.01.121CrossRefGoogle Scholar
  10. [10]
    S. Cao, N. Yao and K. L. Yeung, J. Sol-Gel Sci. Technol. 46, 323 (2008). http://dx.doi.org/10.1007/s10971-008-1701-8CrossRefGoogle Scholar
  11. [11]
    F. Xia and L. Jiang, Adv. Mater. 20, 2842 (2008). http://dx.doi.org/10.1002/adma.200800836CrossRefGoogle Scholar
  12. [12]
  13. [13]
    H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang and Q. Guo, Adv. Mater. 22, 951 (2010). http://dx.doi.org/10.1002/adma.200902039CrossRefGoogle Scholar
  14. [14]
    X. Li, T. Fan, H. Zhou, S. K. Chow, W. Zhang, D. Zhang, Q. Guo and H. Ogawa, Adv. Funct. Mater. 19, 45 (2009). http://dx.doi.org/10.1002/adfm.200800519CrossRefGoogle Scholar
  15. [15]
    D. Yang, L. Qi and J. Ma, Adv. Mater. 14, 1543 (2002). http://dx.doi.org/10.1002/1521-4095CrossRefGoogle Scholar
  16. [16]
    W. Zhang, D. Zhang, T. Fan, J. Gu, J. Ding, H. Wang, Q. Guo and H. Ogawa, Chem. Mater. 21, 33 (2009). http://dx.doi.org/10.1021/cm702458pCrossRefGoogle Scholar
  17. [17]
    S. Cao, K. L. Yeung and P. L. Yue, Appl. Catal. B-Environ. 68, 99 (2006). http://dx.doi.org/10.1016/j.apcatb.2006.07.022CrossRefGoogle Scholar
  18. [18]
    J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 6069 (2006). http://dx.doi.org/10.1021/cm0617485CrossRefGoogle Scholar
  19. [19]
    J. Konishi, K. Fujita, K. Nakanishi and K. Hirao, Chem. Mater. 18, 864 (2006). http://dx.doi.org/10.1021/cm052155hCrossRefGoogle Scholar
  20. [20]
    W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958). http://dx.doi.org/10.1021/ja01539a017CrossRefGoogle Scholar
  21. [21]
    C. Chen, W. M. Cai, M. C. Long, B. X. Zhou, Y. H. Wu, D. Y. Wu and Y. J. Feng, ACS Nano 4, 6425 (2010). http://dx.doi.org/10.1021/nn102130mCrossRefGoogle Scholar
  22. [22]
    X. An and J. C. Yu, RSC Adv. 1, 1426 (2011). http://dx.doi.org/10.1039/C1RA00382HCrossRefGoogle Scholar
  23. [23]
    J. G. Yu, Y. R. Su and B. Cheng, Adv. Funct. Mater. 17, 1984 (2007). http://dx.doi.org/10.1002/adfm.200600933CrossRefGoogle Scholar
  24. [24]
    L. S. Birks and H. Friedman, J. Appl. Phys. 17, 687 (1946). http://dx.doi.org/10.1063/1.1707771CrossRefGoogle Scholar
  25. [25]
    X. C. Wang, J. C. Yu, C. M. Ho, Y. D. Hou and X. Z. Fu, Langmuir 21, 2552 (2005). http://dx.doi.org/10.1021/la047979cCrossRefGoogle Scholar
  26. [26]
    G. C. Groen, L. A. A. Peffer and J. Pérez-Ramírez, Micropor. Mesopor. Mater. 60, 1 (2003). http://dx.doi.org/10.1016/s1387-1811(03)00339-1CrossRefGoogle Scholar
  27. [27]
    M. C. Long, J. J. Jiang, Y. Li, R.Q. Cao, L. Y. Zhang and W. M. Cai, Nano-Micro Lett. 3, 171 (2011). http://dx.doi.org/10.5101/nml.v3i3.p171-177CrossRefGoogle Scholar
  28. [28]
    J. Grzechulska and A. W. Morawski, Appl. Catal. B-Environ. 46, 415 (2003). http://dx.doi.org/10.1016/S0926-3373(03)00265-0CrossRefGoogle Scholar
  29. [29]
    Y. Xie, X. J. Zhao, Y. X. Chen, Q. N. Zhao and Q. H. Yuan, J. Solid State Chem. 180, 3576 (2007). http://dx.doi.org/10.1016/j.jssc.2007.10.023CrossRefGoogle Scholar
  30. [30]
    F. Zuo, L. Wang, T. Wu, Z. Y. Zhang, D. Borchardt and P. Y. Feng, J. Am. Chem. Soc. 132, 11856 (2010). http://dx.doi.org/10.1021/ja103843dCrossRefGoogle Scholar
  31. [31]
    D. M. Chen, Z. Y. Jiang, J. Q. Geng, Q. Wang and D. Yang, Ind. Eng. Chem. Res. 46, 2741 (2007). http://dx.doi.org/10.1021/ie061491kCrossRefGoogle Scholar
  32. [32]
    J. Casanovas, J. M. Ricart, J. Rubio, F. Illas and J. M. Jimenez-Mateos, J. Am. Chem. Soc. 118, 8071 (1996). http://dx.doi.org/10.1021/ja960338mCrossRefGoogle Scholar
  33. [33]
    A. E. Aleksenskii, V. Y. Osipov, A. Y. Vul’, B. Y. Ber, A. B. Smirnov, V. G. Melekhin, G. J. Adriaenssens and K. Iakoubovskii, Phys. Solid State 43, 145 (2001). http://dx.doi.org/10.1134/1.1340200CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2012

Authors and Affiliations

  • Lei Wan
    • 1
  • Mingce Long
    • 1
  • Dongying Zhou
    • 1
  • Liying Zhang
    • 2
  • Weimin Cai
    • 1
  1. 1.School of Environmental Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and TechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations