Advertisement

Nano-Micro Letters

, Volume 4, Issue 2, pp 65–72 | Cite as

Synthesis and Characterization of Rare Earth Ion Doped Nano ZnO

  • Rita John
  • Rajaram Rajakumari
Open Access
Article

Abstract

Zinc oxide (ZnO) doped with erbium at different concentrations was synthesized by solid-state reaction method and characterized by X-ray diffraction (XRD), scanning electron microscopic (SEM), UV-absorption spectroscopy, photoluminescence (PL) study and vibrating sample magnetometer. The XRD studies exhibit the presence of wurtzite crystal structure similar to the parent compound ZnO in 1% Er3+ doped ZnO, suggesting that doped Er3+ ions sit at the regular Zn2+ sites. However, same studies spread over the samples with Er3+ content>1% reveals the occurrence of secondary phase. SEM images of 1% Er3+ doped ZnO show the polycrystalline nature of the synthesized sample. UV-visible absorption spectrum of Er3+ doped ZnO nanocrystals shows a strong absorption peak at 388 nm due to ZnO band to band transition. The PL study exhibits emission in the visible region, due to excitonic as well as defect related transitions. The magnetization-field curve of Er3+ doped ZnO nanocrystals showed ferromagnetic property at room-temperature.

Keywords

Erbium doped zinc oxide Solid state reaction X-ray diffraction Photoluminescence VSM Room-temperature ferromagnetism 

References

  1. [1]
    V. I. Klimov, S. A. Ivanov, J. Nanda, M. Achermann, I. Bezel, J. A. McGuire and A. Piryatinski, Nature 447, 441 (2007). http://dx.doi.org/10.1038/nature05839CrossRefGoogle Scholar
  2. [2]
    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, Science 307, 538 (2005). http://dx.doi.org/10.1126/science.1104274CrossRefGoogle Scholar
  3. [3]
    I. Gur, N. A. Fromer, M. L. Geier and A. P. Alivisatos, Science 310, 462 (2005). http://dx.doi.org/10.1126/science.1117908CrossRefGoogle Scholar
  4. [4]
  5. [5]
    A. I. Ekinov, I. A. Kudryavtsev, M. G Ivanor and A. L. Efros, J. Lumi. 46, 83 (1990).CrossRefGoogle Scholar
  6. [6]
    N. Rakov, F. E. Ramos, G. Hirata and M. Xiao, Appl. Phys. Lett. 83, 272 (2003). http://dx.doi.org/10.1063/1.1592636CrossRefGoogle Scholar
  7. [7]
    H. Ishizumi and Y. Kanemitsu, Appl. Phys. Lett. 86, 253106 (2005). http://dx.doi.org/10.1063/1.1952576CrossRefGoogle Scholar
  8. [8]
    R. John, F. S. Sasi, R. Rajaram and T. Endo, J. Ceram. Soc. 118, 329 (2010). http://dx.doi.org/10.2109/jcersj2.118.329CrossRefGoogle Scholar
  9. [9]
    C. Ting, S. Chen, W. Hsich and H. Lee, J. Appl. Phys. 90, 5564 (2001). http://dx.doi.org/10.1063/1.1413490CrossRefGoogle Scholar
  10. [10]
    P. C. Becker, N. A. Olison and J. R. Simpson, Erbium doped fiber amplifiers fundamental and technology, Harcourt Brace & Company, London, 1999.Google Scholar
  11. [11]
    A. Polman, J. Appl. Phys. 82, 1 (1997). http://dx.doi.org/10.1063/1.366265CrossRefGoogle Scholar
  12. [12]
    B. Julian, R. Corberan, E. Cordoncillo, P. Esoribano, B. Viana and C. Sanchez, Nanotechnol. 16, 2707 (2005). http://dx.doi.org/10.1088/0957-4484/16/11/040CrossRefGoogle Scholar
  13. [13]
    C. Falcony, A. Ortiz, M. Garcia and J. S. Helman, J. Appl. Phys. 63, 2378 (1988). http://dx.doi.org/10.1063/1.341055CrossRefGoogle Scholar
  14. [14]
    A. Ortiz, C. Falcony, M. Garcia and A. Sanchez, J. Phys. D 20, 670 (1987). http://dx.doi.org/10.1088/0022-3727/20/5/019CrossRefGoogle Scholar
  15. [15]
    D. V. Voort, A. Imbof and G. J. Blasse, Solid State Chem. 96, 311 (1992). http://dx.doi.org/10.1016/S0022-4596(05)80264-6CrossRefGoogle Scholar
  16. [16]
    F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu and D. R. Yuan, Langmuir, 20, 3528 (2004). http://dx.doi.org/10.1021/la049874fCrossRefGoogle Scholar
  17. [17]
    R. Garcia, G. A. Hirata and J. Mckittick, J. Mater. Res. 16, 1059 (2001). http://dx.doi.org/10.1557/JMR.2001.0147CrossRefGoogle Scholar
  18. [18]
    G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953). http://dx.doi.org/10.1016/0001-6160(53)90006-6CrossRefGoogle Scholar
  19. [19]
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, J. Appl. Phys. 79, 7983 (1996). http://dx.doi.org/10.1063/1.362349CrossRefGoogle Scholar
  20. [20]
    A. Zunger, S. Lany and S. Raebige, Physics 3, 53 (2010). http://dx.doi.org/10.1103/Physics.3.53CrossRefGoogle Scholar
  21. [21]
    R. Nascimento, A. J. A. de Oliveira, A. A. Correa, L. O. Bulhoes, E. C. Pereira, V. M. Souza and L. Walmsley, Phys. Rev. B 67, 144422 (2003). http://dx.doi.org/10.1103/PhysRevB.67.144422CrossRefGoogle Scholar
  22. [22]
    F. R. de Paula, L. Walmsley, E. C. Pereira and A. J. A. Oliveira, J. Magn. Magn. Mater. 320, e193 (2008). http://dx.doi.org/10.1016/j.jmmm.2008.02.045CrossRefGoogle Scholar
  23. [23]
    D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi and D. Xue, Appl. Phys. 105, 113928 (2009).CrossRefGoogle Scholar
  24. [24]
    S. Deng, K. P. Loh, J. B. Yi, J. Ding, H. R. Tan, M. Lin, Y. L. Foo, M. Zheng and C. H. Sow, Appl. Phys. Lett. 93, 193111 (2009). http://dx.doi.org/10.1063/1.3025853CrossRefGoogle Scholar
  25. [25]
    O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010). http://dx.doi.org/10.1088/0034-4885/73/5/056501CrossRefGoogle Scholar
  26. [26]
    A. Sundaresan and C. N. Rao, Sol. Sta. Comm. 149, 1197 (2009). http://dx.doi.org/10.1016/j.ssc.2009.04.028CrossRefGoogle Scholar
  27. [27]
    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh and C. N. Rao, Phys. Rev. B 74, 161306(R) (2006).CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2012

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsUniversity of MadrasChennaiIndia
  2. 2.Department of PhysicsQueen Mary’s CollegeChennaiIndia

Personalised recommendations