Nano-Micro Letters

, Volume 4, Issue 1, pp 10–13 | Cite as

Terahertz Generation Using Implanted InGaAs Photomixers and Multi-wavelength Quantum Dot Lasers

  • Y. Hou
  • J. R. Liu
  • M. Buchanan
  • A. J. Spring Thorpe
  • P. J. Poole
  • H. C. Liu
  • Ke Wu
  • Sjoerd Roorda
  • X. P. Zhang
Open Access
Article

Abstract

We report on a study of terahertz (THz) generation using implanted InGaAs photomixers and multi-wavelength quantum dot lasers. We carry out InGaAs materials growth, optical characterization, device design and fabrication, and photomixing experiments. This approach is capable of generating a comb of electromagnetic radiation from microwave to terahertz. For shortening photomixer carrier lifetime, we employ proton implantation into an epitaxial layer of lattice matched InGaAs grown on InP. Under a 1.55 μm multi-mode InGaAs/InGaAsP quantum dot laser excitation, a frequency comb with a constant frequency spacing of 50 GHz generated on the photomixer is measured, which corresponds to the beats of the laser longitudinal modes. The measurement is performed with a Fourier transform infrared spectrometer. This approach affords a convenient method to achieve a broadband multi-peak coherent THz source.

Keywords

Proton implanted InGaAs Trahertz Photomixer Multi-wavelength quantum dot laser Fourier transform infrared spectroscopy 

References

  1. [1]
    R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti and F. Rossi, Nature 417, 156 (2002). http://dx.doi.org/10.1038/417156aCrossRefGoogle Scholar
  2. [2]
    S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Matyas, C. Jirauscheck, Q. Hu and H. C. Liu, Optics Express, in press.Google Scholar
  3. [3]
    J. M. Dai, J. Liu and X. C. Zhang, IEEE J. Sel. Top. Quant. Electron. 17, 183 (2011). http://dx.doi.org/10.1109/JSTQE.2010.2047007CrossRefGoogle Scholar
  4. [4]
    K. Kawase, J. Shikata and H. Ito, J. Phys. D: Appl. Phys. 35, R1 (2001). http://dx.doi.org/10.1088/0022-3727/35/3/201CrossRefGoogle Scholar
  5. [5]
    W. Shi, Y. J. Ding, N. Fernelius and K. Vodopyanov, Opt. Lett. 27, 1454 (2002). http://dx.doi.org/10.1364/OL.27.001454CrossRefGoogle Scholar
  6. [6]
    S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301-1 (2011). http://dx.doi.org/10.1063/1.3552291
  7. [7]
    E. R. Brown, Inter. J. High Speed Electron. Syst. 13, 497 (2003). http://dx.doi.org/10.1142/S0129156403001818CrossRefGoogle Scholar
  8. [8]
    N. Chimot, J. Mangeney, P. Crozat, J. M. Lourtioz, K. Blary, J. F. Lampin, G. Mouret, D. Bigourd and E. Fertein, Optics Express 14, 1856 (2006). http://dx.doi.org/10.1364/OE.14.001856CrossRefGoogle Scholar
  9. [9]
    J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary and J. F. Lampin, Appl. Phys. Lett. 91, 241102–1 (2007).CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2012

Authors and Affiliations

  • Y. Hou
    • 1
    • 2
  • J. R. Liu
    • 1
  • M. Buchanan
    • 1
  • A. J. Spring Thorpe
    • 1
  • P. J. Poole
    • 1
  • H. C. Liu
    • 1
  • Ke Wu
    • 3
  • Sjoerd Roorda
    • 4
  • X. P. Zhang
    • 5
  1. 1.Institute for Microstructural SciencesNational Research CouncilOttawaCanada
  2. 2.Department of Electrical EngineeringConcordia UniversityCanada
  3. 3.Department of Electrical EngineeringEcole PolytechniqueMontréalCanada
  4. 4.Département de physiqueUniversité de MontréalMontréalCanada
  5. 5.Department of Electrical EngineeringConcordia UniversityMontrealCanada

Personalised recommendations