Advertisement

Nano-Micro Letters

, Volume 3, Issue 4, pp 236–241 | Cite as

Mixed Phase Anatase/rutile Titanium Dioxide Nanotubes for Enhanced Photocatalytic Degradation of Methylene-blue

  • Mario BoehmeEmail author
  • Wolfgang Ensinger
Open Access
Article

Abstract

Titanium dioxide Nanotubes (TNTs) prepared by electroless deposition have been annealed at air ambient and low temperature. As a result, the anatase/rutile phase composition of the TNTs can be tailored to the needs of later applications. Nanotubes with anatase/rutile mixed phase ratio of 4:1 have been produced in this report and further examined for their photocatalytical behavior. The photocatalytical properties of the TNTs have been observed by degradation of methylene-blue in aqueous solution under low power UV-light irradiation. The results shown in this report are based on the synergetic effect between rutile and anatase, which results in the mixed phase TiO2 nanotubes having enhanced photocatalytical properties.

Keywords

Electroless deposition Degussa P25 Nanotubes Titanium dioxide Anatase 

References

  1. [1]
    R. J. Tayade, T. S. Natarajan and H. C. Bajaj, Ind. Eng. Chem. Res. 48, 10262 (2009). http://dx.doi.org/10.1021/ie9012437CrossRefGoogle Scholar
  2. [2]
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004CrossRefGoogle Scholar
  3. [3]
    B. Li, X. Wang, M. Yan and L. Li, Mater. Chem. Phys. 78, 184 (2003). http://www.sciencedirect.com/science/article/B6TX4-46SG3DN-4/2/d7c686b81aaf493c4d2f290a744bc767CrossRefGoogle Scholar
  4. [4]
    A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobio. C: Photochem. Rev. 1, 1 (2000). http://www.sciencedirect.com/science/article/B6W79-41R3GCK-2/2/97df01d046ea84e4d6250e0193e020a1CrossRefGoogle Scholar
  5. [5]
    A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev. 95, 735 (1995). http://dx.doi.org/10.1021/cr00035a013CrossRefGoogle Scholar
  6. [6]
    H. Tada, M. Yamamoto and S. Ito, Langmuir 15, 3699 (1999). http://dx.doi.org/10.1021/la9816712CrossRefGoogle Scholar
  7. [7]
    J. C. Yu, J. Yu and J. Zhao, Appl. Catal. B: Environ. 36, 31 (2002). http://www.sciencedirect.com/science/article/B6TF6-44B6YGW-3/2/caa0a37cb0941c52b769a0814c1cabd8CrossRefGoogle Scholar
  8. [8]
    L. Kavan, M. Grätzel, S. E. Gilbert, C. Klemenz and H. J. Scheel, J. Am. Chem. Soc. 118, 6716 (1996). http://dx.doi.org/10.1021/ja954172lCrossRefGoogle Scholar
  9. [9]
    D. Li and Y. Xia, Nano Letters 4, 933 (2004). http://dx.doi.org/10.1021/nl049590fCrossRefGoogle Scholar
  10. [10]
    A. Sadeghzadeh Attar, M. Sasani Ghamsari, F. Hajiesmaeilbaigi, S. Mirdamadi, K. Katagiri and K. Koumoto, J. Mater. Sci. 43, 5924 (2008). http://dx.doi.org/10.1007/s10853-008-2872-yCrossRefGoogle Scholar
  11. [11]
    T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 7, 3 (2006). http://203.199.213.48/52/Google Scholar
  12. [12]
    W. Li, S. Ismat Shah, C. P. Huang, O. Jung and C. Ni, Mater. Sci. Eng. B 96, 247 (2002). http://www.sciencedirect.com/science/article/B6TXF-46YXMJ1-1/2/595f05b79496b0458624c7c4ff5a7bdbGoogle Scholar
  13. [13]
    T. Maiyalagan, B. Viswanathan and U. V. Varadaraju, Bull. Mater. Sci. 29, 705 (2006). http://203.199.213.48/52/Google Scholar
  14. [14]
    M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes, J. Phys. Chem. B 110, 16179 (2006). http://dx.doi.org/10.1021/jp064020kGoogle Scholar
  15. [15]
    H. Imai, Y. Takei, K. Shimizu, M. Matsuda and H. Hirashima, J. Mater. Chem. 9, 2971 (1999). http://dx.doi.org/10.1039/A906005GCrossRefGoogle Scholar
  16. [16]
    M. Boehme, G. Fu, E. Ionescu and W. Ensinger, Nano-Micro Letters 2, 22 (2010). http://www.nmletters.org/index.php?journal=nml&page=article&op=view&path[]=46CrossRefGoogle Scholar
  17. [17]
    T. Ohno, K. Sarukawa, K. Tokieda and M. Matsumura, J. Catal. 203, 82 (2001). http://www.sciencedirect.com/science/article/B6WHJ-45BCC6C-3G/2/3fe6aa560b59039fe084f2b46ed6d269CrossRefGoogle Scholar
  18. [18]
    R. R. Bacsa and J. Kiwi, Appl. Catal. B: Environ. 16, 19 (1998). http://www.sciencedirect.com/science/article/B6TF6-3VN03K2-2/2/58d61c1a346ba4b25b4155184585c137CrossRefGoogle Scholar
  19. [19]
    K. Tanaka, M. F. V. Capule and T. Hisanaga, Chem. Phys. Lett. 187, 73 (1991). http://www.sciencedirect.com/science/article/B6TFN-44K955N-2J/2/c4b6c0ff995216d03eb2d99becf28aaaCrossRefGoogle Scholar
  20. [20]
    G. Blondeel, A. Harriman and D. Williams, Solar Energy Materials 9, 217 http://www.sciencedirect.com/science/article/B7571-481F872-2B/2/749c5e596ca2041e8ca7f8b743cb31e1Google Scholar
  21. [21]
    H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohge and S. Ito, J. Phys. Chem. B 104, 4585 (2000). http://dx.doi.org/10.1021/jp000049rCrossRefGoogle Scholar
  22. [22]
    T. Kawahara, Y. Konishi, H. Tada, N. Tohge and S. Ito, Langmuir 17, 7442 (2001). http://dx.doi.org/10.1021/la010307rCrossRefGoogle Scholar
  23. [23]
    F. Ye and A. Ohmori, Surf. Coat. Tech. 160, 62 (2002). http://www.sciencedirect.com/science/article/B6TVV-46H7SJB-7/2/a7b863dda086dee2ad8d310cf5e650b6CrossRefGoogle Scholar
  24. [24]
    H. Zhang, M. Finnegan and J. F. Banfield, Nano Letters 1, 81 (2000). http://dx.doi.org/10.1021/nl0055198CrossRefGoogle Scholar
  25. [25]
    T. Sugimoto, X. Zhou and A. Muramatsu, J. Coll. Inter. Sci. 259, 43 (2003). http://www.sciencedirect.com/science/article/B6WHR-480CK3K-J/2/b39fd8acd70b423260ca1cc5bbf2a53dCrossRefGoogle Scholar
  26. [26]
    S. Kittaka, K. Matsuno and S. Takahara, J. Solid State Chem. 132, 447 (1997). http://www.sciencedirect.com/science/article/B6WM2-45K153M-5V/2/ded00fb7136b292ced79ceb592dcc450CrossRefGoogle Scholar
  27. [27]
    H. M. Lu, W. X. Zhang and Q. Jiang, Adv. Eng. Mater. 5, 787 (2003). http://dx.doi.org/10.1002/adem.200300359CrossRefGoogle Scholar
  28. [28]
    K. J. A. Raj and B. Viswanathan, Indian J. Chem. 48A, 1378 (2009). http://nopr.niscair.res.in/handle/123456789/6124Google Scholar
  29. [29]
    J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J. R. Morante, J. Appl. Phys. 92, 853 (2002). http://link.aip.org/link/?JAP/92/853/1CrossRefGoogle Scholar
  30. [30]
    H. Zhang and J. F. Banfield, J. Mater. Chem. 8, 2073 (1998). http://dx.doi.org/10.1039/A802619JCrossRefGoogle Scholar
  31. [31]
    H. Zhang and J. F. Banfield, J. Phys. Chem. B 104, 3481 (2000). http://dx.doi.org/10.1021/jp000499jCrossRefGoogle Scholar
  32. [32]
    P. I. Gouma and M. J. Mills, J. Am. Ceramic Soc. 84, 619 (2001). http://dx.doi.org/10.1111/j.1151-2916.2001.tb00709.xCrossRefGoogle Scholar
  33. [33]
    F. Akbal, Environ. Prog. 24, 317 (2005). http://dx.doi.org/10.1002/ep.10092CrossRefGoogle Scholar
  34. [34]
    J. Yao and C. Wang, Int. J. Photoenergy 2010, 643182 (2010). www.hindawi.com/journals/ijp/2010/643182/CrossRefGoogle Scholar
  35. [35]
    R. I. Bickley, T. Gonzalez-Carreno, J. S. Lees, L. Palmisano and R. J. D. Tilley, J. Solid State Chem. 92, 178 (1991). http://www.sciencedirect.com/science/article/B6WM2-4B6NWG7-F7/2/21faed756bc30f5acf3966ea0fdb6e4eCrossRefGoogle Scholar
  36. [36]
    D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer, J. Phys. Chem. B 107, 4545 (2003). http://dx.doi.org/10.1021/jp0273934CrossRefGoogle Scholar
  37. [37]
    V. Collins-Martínez, A. López Ortiz and A. Aguilar Elguézabal, Int. J. Chem. React. Engin. 5, (2007). http://www.bepress.com/ijcre/vol5/A92/Google Scholar
  38. [38]
    R. A. Spurr and H. Myers, Analytical Chemistry 29, 760 (1957). http://dx.doi.org/10.1021/ac60125a006CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  1. 1.Department of Materials ScienceDarmstadt University of TechnologyDarmstadtGermany

Personalised recommendations