Advertisement

Nano-Micro Letters

, Volume 3, Issue 3, pp 141–145 | Cite as

Effective Doping of Rare-earth Ions in Silica Gel: A Novel Approach to Design Active Electronic Devices

  • D. Haranath
  • Savvi Mishra
  • Amish G. Joshi
  • Sonal Sahai
  • Virendra Shanker
Open Access
Article

Abstract

Eu3+ luminescence spectroscopy has been used to investigate the effective doping of alkoxide-based silica (SiO2) gels using a novel pressure-assisted sol-gel method. Our results pertaining to intense photoluminescence (PL) from gel nanospheres can be directly attributed to the high specific surface area and remarkable decrease in unsaturated dangling bonds of the gel nanospheres under pressure. An increased dehydroxylation in an autoclave resulted in enhanced red (∼611 nm) PL emission from europium and is almost ten times brighter than the SiO2 gel made at atmospheric pressure and ∼50°C using conventional Stöber-Fink-Bohn process. The presented results are entirely different from those reported earlier for SiO2:Eu3+ gel nanospheres and the origin of the enhanced PL have been discussed thoroughly.

Keywords

Luminescence Nanophosphor Short-range order Electron microscopy 

References

  1. [1]
    J. Wang, Y. Yoo, C. Gao, I. Takeuchi, X. Sun, H. Chang, X. D. Xiang and P. G. Schultz, Science 279, 1712 (1998).CrossRefGoogle Scholar
  2. [2]
    L. S. Liao, X. M. Bao, X. Q. Zheng, N. S. Li and N. B. Min, Appl. Phys. Lett. 68, 850 (1996). http://dx.doi.org/10.1063/1.116554CrossRefGoogle Scholar
  3. [3]
    M. A. Silva, D. C. Oliveira, A. T. Papacidero, C. Mello, E. J. Nassar, K. J. Ciuffi, and H. C. Sacco, J. Sol-Gel Sci. Tech. 26, 329 (2003).CrossRefGoogle Scholar
  4. [4]
    E. J. Nassar, C. R. Neri, P. S. Calefi and O. A. Serra. J. Non-Cryst. Solids 247, 124 (1999). http://dx.doi.org/10.1016/S0022-3093(99)00046-0CrossRefGoogle Scholar
  5. [5]
    A. S. Zyubin, Y. D. Glinka, A. M. Mebel, S. H. Lin, L. P. Hwang and Y. T. Chen, J. Chem. Phys. 116, 281 (2002). http://dx.doi.org/10.1063/1.1425382CrossRefGoogle Scholar
  6. [6]
    Y. D. Glinka, A. S. Zyubin, A. M. Mebel, S. H. Lin, L. P. Hwang and Y. T. Chen, Euro. Phys. J. D 16, 279 (2001). http://dx.doi.org/10.1007/s100530170110CrossRefGoogle Scholar
  7. [7]
    D. Haranath, N. Gandhi, S. Sahai, M. Husain and V. Shanker, Chem. Phys. Lett. 496, 100 (2010). http://dx.doi.org/10.1016/j.cplett.2010.07.015CrossRefGoogle Scholar
  8. [8]
    A. R. Guichar, D. N. Barsic, S. Sharma, T. I. Kamins and M. L. Bronersma Nano Lett. 6, 2140 (2006).CrossRefGoogle Scholar
  9. [9]
    V. S. Kortov, A. F. Zatsepin, S. V. Gurbonov and A. M. Murzakaev, Phys. Solid State 48, 1273 (2006). http://dx.doi.org/10.1134/S1063783406070092CrossRefGoogle Scholar
  10. [10]
    D. Haranath, V. Shanker, H. Chander and P. Sharma, J. Phys. D: Appl. Phys. 36, 2244 (2003). http://dx.doi.org/10.1088/0022-3727/36/18/012CrossRefGoogle Scholar
  11. [11]
    C. J. Brinker and G. W. Scherer, Sol-Gel Science Academic Press, Boston (1990).Google Scholar
  12. [12]
    J. C. G. Bunzil and G. R. Choppin, Lanthanide Probe in Life, Chemical and Earth Sciences, Elsevier, New York (1989).Google Scholar
  13. [13]
    D. Levy, R. Reisfeld and D. Avnir, Chem. Phys. Lett. 109, 593 (1984). http://dx.doi.org/10.1016/0009-2614(84)85431-7CrossRefGoogle Scholar
  14. [14]
    D. Haranath, S. Sahai, S. Singh, A. G. Joshi, M. Husain and V. Shanker, J. Mater. Chem. 21, 9471 (2011). http://dx.doi.org/10.1039/c1jm11874aCrossRefGoogle Scholar
  15. [15]
    S. Frank, P. Poncharai, Z. L. Wang and W.A. de Heer, Science 280, 1744 (1998). http://dx.doi.org/10.1126/science.280.5370.1744CrossRefGoogle Scholar
  16. [16]
    A. P. Alivisatos, Science 71, 933 (1996).CrossRefGoogle Scholar
  17. [17]
    P. Kim and C. M Lieber, Science 286, 2148 (1999). http://dx.doi.org/10.1126/science.286.5447.2148CrossRefGoogle Scholar
  18. [18]
    W. Han, S. Fan, Q. Li and Y. Hu, Science 277, 1287 (1997). http://dx.doi.org/10.1126/science.277.5330.1287CrossRefGoogle Scholar
  19. [19]
    L. Xu, B. Wei, Z. Zhang, Z. Lu, H. Gao and Y. Zhang, Nanotechnology 17, 4327 (2006).CrossRefGoogle Scholar
  20. [20]
    Z. Andric, M. D. Dramicanin, V. Jokanovic, T. Dramicanin, M. Mitric and B. Viana, J. Optoelecton. Adv. Mater. 8, 829 (2006).Google Scholar
  21. [21]
    X. L. Wu, G. G. Siu, S. Tong and D. Feng, Appl. Phys. Lett. 69, 523 (1996). http://dx.doi.org/10.1063/1.117774CrossRefGoogle Scholar
  22. [22]
    V. Lehmann and U. Gosele, Appl. Phys. Lett. 58, 856 (1991). http://dx.doi.org/10.1063/1.104512CrossRefGoogle Scholar
  23. [23]
    W. J. Zhang, X. L. Wu, J. Y. Fan, G. S. Huang, T. Qiu and P. K. Chu, J. Phys. Condens. Matter 18, 9937 (2006). http://dx.doi.org/10.1088/0953-8984/18/43/015CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  • D. Haranath
    • 1
  • Savvi Mishra
    • 1
  • Amish G. Joshi
    • 1
  • Sonal Sahai
    • 1
  • Virendra Shanker
    • 1
  1. 1.National Physical LaboratoryCouncil of Scientific and Industrial ResearchNew DelhiIndia

Personalised recommendations