Advertisement

Nano-Micro Letters

, Volume 3, Issue 1, pp 6–11 | Cite as

Synthesis and Photocatalytic Activity of One-Dimensional CdS@TiO2 Core-Shell Heterostructures

  • Hongwei Wei
  • Le Wang
  • Zhipeng Li
  • Shouqing Ni
  • Quanqin Zhao
Open Access
Article

Abstract

One-dimensional CdS@TiO2 core-shell heterostructures were fabricated via the hydrolysis of tetrabutyl titanate (TBT) on preformed CdS nanowires. The as-prepared products were characterized by X-ray diffraction, transmission electron microscopy, selected area electron diffraction and diffuse reflectance spectroscopy techniques. Results demonstrated that the hydrolysis of TBT had a great influence on the morphology of the coated TiO2 shell, resulting in the formation of TiO2 nanoparticles and nanolayer-modified CdS@TiO2 heterostructures. Degradation of methylene blue using CdS@TiO2 core-shell heterostructures as photocatalysts under visible light irradiation was investigated. Comparative photocatalytic tests showed that the TiO2 nanoparticles-modified heterostructure exhibited a superior activity due to the passivity of photogenerated charge carriers.

Keywords

One-dimensional CdS@TiO2 heterostructures Photocatalysis Methylene blue Morphology Mechanism 

Referrences

  1. [1]
    A. Fujishima and K. Honda, Nature 238,37 (1972). http://dx.doi.org/10.1038/238037a0CrossRefGoogle Scholar
  2. [2]
    W. Y. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem. 84, 13669 (1994). http://dx.doi.org/10.1021/j100102a038CrossRefGoogle Scholar
  3. [3]
    S. U. M. Khan, M. Al-Shahry and W. B. Ingler Jr, Science 297, 2243 (2002). http://dx.doi.org/10.1126/science.1075035CrossRefGoogle Scholar
  4. [4]
    S. Sakthivel, M. Janczarek and H. Kisch, J. Phys. Chem. B 108, 19384 (2004). http://dx.doi.org/10.1021/jp046857qCrossRefGoogle Scholar
  5. [5]
    X. Du, J. H. He and Y. Q. Zhao, J. Phys. Chem. C 113, 14151 (2009). http://dx.doi.org/10.1021/jp9056175CrossRefGoogle Scholar
  6. [6]
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa and T. Fukumura, Science 291, 854 (2001). http://dx.doi.org/10.1126/science.1056186CrossRefGoogle Scholar
  7. [7]
    H.W. Gu, R. K. Zheng, X. X. Zhang and B. Xu, J. Am. Chem. Soc. 126, 5664 (2004). http://dx.doi.org/10.1021/ja0496423CrossRefGoogle Scholar
  8. [8]
    K. W. Kwon and M. Shim, J. Am. Chem. Soc. 127, 10269 (2005). http://dx.doi.org/10.1021/ja051713qCrossRefGoogle Scholar
  9. [9]
    G. Z. Shen, D. Chen and C. J. Lee, J. Phys. Chem. B 110, 15689 (2006). http://dx.doi.org/10.1021/jp0630119CrossRefGoogle Scholar
  10. [10]
    X. Zong, H. J. Yan, G. P. Wu, G. J. Ma, F. Y. Wen, L. Wang and C. Li, J. Am. Chem. Soc. 130, 7176 (2008). http://dx.doi.org/10.1021/ja8007825CrossRefGoogle Scholar
  11. [11]
    J. Y. Kim and F. E. Osterloh, J. Am. Chem. Soc. 127, 10152 (2005). http://dx.doi.org/10.1021/ja052735fCrossRefGoogle Scholar
  12. [12]
    A. Zaban, O. I. Mićić, B. A. Gregg and A. J. Nozik, Langmuir 14, 3153 (1998). http://dx.doi.org/10.1021/la9713863CrossRefGoogle Scholar
  13. [13]
    Y. H. Zheng, L. R. Zheng, Y. Y. Zhan, X. Y. Lin, Q. Zheng and K. M. Wei, Inorg. Chem. 46, 6980 (2007). http://dx.doi.org/10.1021/ic700688fCrossRefGoogle Scholar
  14. [14]
    G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, Nano. Lett. 6, 215 (2006). http://dx.doi.org/10.1021/nl052099jCrossRefGoogle Scholar
  15. [15]
    G. J. Meyer, Inorg. Chem. 44, 6852 (2005). http://dx.doi.org/10.1021/ic0505908CrossRefGoogle Scholar
  16. [16]
    Z. A. Peng and X. G. Peng, J. Am. Chem. Soc. 123, 183 (2001). http://dx.doi.org/10.1021/ja003633mCrossRefGoogle Scholar
  17. [17]
    L. Wang, L. Y. Wang, C. Q. Zhu, X. W. Wei and X. W. Kan, Anal. Chim. Acta. 468, 35 (2002). http://dx.doi.org/10.1016/S0003-2670(02)00632-3CrossRefGoogle Scholar
  18. [18]
    Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim and H. Q. Yan, Adv. Mater. 15, 353 (2003). http://dx.doi.org/10.1002/adma.200390087CrossRefGoogle Scholar
  19. [19]
    M. Chen, Y. Xie, J. Lu, Y. Xiong, S. Y. Zhang, Y. T. Qian and X. M. Liu, J. Mater. Chem. 12, 748 (2002). http://dx.doi.org/10.1039/b105652mCrossRefGoogle Scholar
  20. [20]
    C. J. Barrelet, Y. Wu, D. C. Bell and C. M. Lieber, J. Am. Chem. Soc. 125, 11498 (2003). http://dx.doi.org/10.1021/ja036990gCrossRefGoogle Scholar
  21. [21]
    C. H. Ye, G. Meng, Y. H. Wang, Z. Jiang and L. D. Zhang, J. Phys. Chem. B 106, 10338 (2002). http://dx.doi.org/10.1021/jp0255785CrossRefGoogle Scholar
  22. [22]
    H. Yin, Y. Wada, T. Kitamura, T. Sakata, H. Mori and S. Yanagida, Chem. Lett. 30, 334 (2001). http://dx.doi.org/10.1246/cl.2001.334CrossRefGoogle Scholar
  23. [23]
    M. G. Kang, H. E. Han and K. J. Kim, J. Photochem. Photobiol. A: Chem. 125, 119 (1999). http://dx.doi.org/10.1016/S1010-6030(99)00092-1CrossRefGoogle Scholar
  24. [24]
    X. F. Gao, W. T. Sun, Z. D. Hu, G. Ai, Y. L. Zhang, S. Feng, F. Li and L. M. Peng, J. Phys. Chem. C 113, 20481 (2009). http://dx.doi.org/10.1021/jp904320dCrossRefGoogle Scholar
  25. [25]
    C. L. Wang, L. Sun, K. P. Xie and C. J. Lin, Sci. China. Ser. B 12, 2148 (2009). http://dx.doi.org/10.1007/s11426-009-0157-1CrossRefGoogle Scholar
  26. [26]
    J. H. Zhu, D. Yang, J. Q. Geng, D. M. Chen and Z. Y. Jiang, J. Nanopart. Res. 10, 729 (2008). http://dx.doi.org/10.1007/s11051-007-9301-zCrossRefGoogle Scholar
  27. [27]
    J. C. Lee, T. G. Kim, W. Lee, S. H. Han and Y. M. Sung, Cryst. Growth Des. 10, 4519 (2009). http://dx.doi.org/10.1021/cg9005373CrossRefGoogle Scholar
  28. [28]
    J. Cao, J. Z. Sun, H. Y. Li, J. Hong and M. Wang, J. Mater. Chem. 14, 1203 (2004). http://dx.doi.org/10.1039/b313541aCrossRefGoogle Scholar
  29. [29]
    J. C. Yu, L. Wu, J. Lin, P. S. Li and Q. Li, Chem. Commun. 13, 1552 (2003). http://dx.doi.org/10.1039/b302418kCrossRefGoogle Scholar
  30. [30]
    H. Fujii, K. Inata, M. Ohtaki, K. Eguchi and H. Arai, J. Mater. Sci. 36, 527 (2001). http://dx.doi.org/10.1023/A:1004857419242CrossRefGoogle Scholar
  31. [31]
    G. S. Li, D. Q. Zhang and J. C. Yu, Environ. Sci. Technol. 43, 7079 (2009). http://dx.doi.org/10.1021/es9011993CrossRefGoogle Scholar
  32. [32]
    L. Wang, H. W. Wei, Y. J. Fan, X. Z. Liu and J. H. Zhan, Nanoscale Res. Lett. 4, 558 (2009). http://dx.doi.org/10.1007/s11671-009-9280-3CrossRefGoogle Scholar
  33. [33]
    J. H. Zhan, X. G. Yang, D. W. Wang, S. D. Li, Y. Xie, Y. N. Xia and Y. T. Qian, Adv. Mater. 12, 1348 (2000). http://dx.doi.org/10.1002/1521-4095(200009)12:18<1348::AID-ADMA1348>3.0.CO;2-XCrossRefGoogle Scholar
  34. [34]
    L. M. Torres-Martínez, A. Cruz-López, I. Juárez-Ramírez and M. E. Meza-de la Rosa, J. Hazard. Mater. 165, 774 (2009). http://dx.doi.org/10.1016/j.jhazmat.2008.10.060CrossRefGoogle Scholar
  35. [35]
    A. Franco, M. C. Neves, M. M. L. Ribeiro Carrott, M. H. Mendonça, M. I. Pereira and O. C. Monteiro, J. Hazard. Mater. 161, 545 (2009). http://dx.doi.org/10.1016/j.jhazmat.2008.03.133CrossRefGoogle Scholar
  36. [36]
    K. Woan, G. Pyrgiotakis and W. Sigmund, Adv. Mater. 21, 1 (2009). http://dx.doi.org/10.1002/adma.200802738CrossRefGoogle Scholar
  37. [37]
    D. C. Hurum and K. A. Gray, J. Phys. Chem. B 109, 977 (2005). http://dx.doi.org/10.1021/jp045395dCrossRefGoogle Scholar
  38. [38]
    X. G. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997). http://dx.doi.org/10.1021/ja970754mCrossRefGoogle Scholar
  39. [39]
    P. A. Sant and P. V. Kamat, Phys. Chem. Chem. Phys. 4, 198 (2002). http://dx.doi.org/10.1039/b107544fCrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  • Hongwei Wei
    • 1
  • Le Wang
    • 2
  • Zhipeng Li
    • 1
  • Shouqing Ni
    • 1
  • Quanqin Zhao
    • 1
  1. 1.Key Laboratory for Colloid & Interface Chemistry of Education Ministry, Department of ChemistryShandong UniversityJinanP. R. China
  2. 2.State Key Laboratory of Ceramic Zibo Entry and Exit Inspection and Quarantine BureauZiboP. R. China

Personalised recommendations