Journal of Endocrinological Investigation

, Volume 11, Issue 8, pp 567–570 | Cite as

Postnatal development of the renin-angiotensin system in thyroidectomized rats

  • E. Jiménez
  • M. Ruiz
  • M. Montiel
  • A. Reyes
  • M. Morell


Postnatal changes in plasma renin activity (PRA), plasma renin concentration (PRC), plasma renin substrate (PRS) and plasma angiotensin II concentration (All) were studied in young thyroidectomized rats from the 4th to the 10th week of life. Although there were no differences in the PRA pattern between thyroidectomized and euthyroid animals, an increase in PRC from the 6th week of life, together with a reduction of the glomerular filtration rate (GFR) and an increase in the fractional excretion of sodium (FENa) from the 8th week of life, was observed in young hypothyroid animals. Moreover, in thyroidectomized animals, PRS and All declined until the 10th week of age, while in euthyroid animals an increase of PRS and All was observed between the 8th and 10th weeks of life. These results show that the changes in sodium renal handling following thyroidectomy could have an influence on the RAS components.


Renin-angiotensin system hypothyroidism postnatal development renal function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hauger-Klevene J.H., Levin G.M. Kinetic of the renin system in hyper-and hypothyroidism. Medicina (B. Aires) 36: 219, 1976.Google Scholar
  2. 2.
    Jiménez E., Montiel M., Narvaez J.A., Morell M. Effects of hyper- and hypothyroidism on the basal levels of angiotensin I and kinetic parameters of renin-angiotensin system in male rats. Rev. Esp. Fisiol. 38: 149, 1982.PubMedGoogle Scholar
  3. 3.
    Bounhik J., Galen F.X., Clauser E., Menard J., Corvol P. The renin-angiotensin system in thyroidectomized rats. Endocrinology 108: 647, 1981.CrossRefGoogle Scholar
  4. 4.
    Jiménez E., Montiel M., Narvàez J.A., Morell M. Renin-angiotensin system in hypothyroid rats: effects of potassium iodide and triiodo-L-thyronine. Acta Endocrinol. (Kbh.) 105: 505, 1984.Google Scholar
  5. 5.
    Katz A.I., Lindheimer M.D. Actions of hormones on the kidney. Annu. Rev. Physiol. 39: 97, 1977.PubMedCrossRefGoogle Scholar
  6. 6.
    Stringer B.M.J., Wynford-Thomas D. Importance of maintaining species homology in thyroid hormone radioimmunoassay: modification of human radioimmunoassay kits for use with rat samples. Horm. Res. 16: 392, 1982.PubMedCrossRefGoogle Scholar
  7. 7.
    Menard J., Catt K.J. Measurement of renin activity, concentration and substrate in rat plasma by radioimmunoassy of angiotensin I. Endocrinology 90: 422, 1972.PubMedCrossRefGoogle Scholar
  8. 8.
    Haas E., Goldblatt H., Gipson E.C., Lewis L. Extraction, purification and assay of human renin free of angiotensinase. Circ. Res. 19: 739, 1966.PubMedCrossRefGoogle Scholar
  9. 9.
    Haber E., Koerner T., Page L.B., Kliman B., Purnode A.J. Application of a radioimmunoassay for angiotensin to the physiologic measurements of plasma renin activity in normal human subjects. Clin. Endocrinol. (Oxf.) 29: 1349, 1969.CrossRefGoogle Scholar
  10. 10.
    Cain M.D., Catt K.J., Coghlan J.P., Blair-West J.R. Measurement of angiotensin II in blood by radioimmunoassay. Endocrinology 86: 955, 1970.PubMedCrossRefGoogle Scholar
  11. 11.
    Katz A.I., Lindheimer M.D. Renal sodium- and potassium-activated adenosine triphosphatase and sodium reabsorption in the hypothyroid rat. J. Clin. Invest. 52: 796, 1973.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Bradley S.E., Stephan F., Coehlo J.B., Reville P. The thyroid and the kidney. Kidney Int. 6: 346, 1974.PubMedCrossRefGoogle Scholar
  13. 13.
    Holmes E.W., DiScala V.A. Studies on the exaggerated natriuretic response to a saline infusion in the hypothyroid rat. J. Clin. Invest. 49: 1224, 1970.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kleeman C.R., Danovitch G.M. The kidneys and electrolyte metabolism. In: Ingbar S.H., Braverman L.E. (Eds.), The thyroid. J.B. Lippincott Co., London, 1986, p. 1148.Google Scholar
  15. 15.
    Barlet C., Doucet A. Kinetics of triiodothyronine action on Na-K-ATPase in single segment of rabbit nephron. Pflügers Arch. 407: 27, 1986.PubMedCrossRefGoogle Scholar
  16. 16.
    Thurau K., Schnermann J., Nagel W., Horster M., Wahl M. Composition of tubular fluid in the macula densa segment as a factor regulating the function of the juxtaglomerular apparatus. Circ. Res. 20/21 (Suppl. II): 79, 1967.Google Scholar
  17. 17.
    Montiel M., Jiménez E., Naráez J.A., Morell M. Renin-angiotensin-aldosterone system in hyper- and hypothyroid rats during sodium depletion. Endocr. Res. Commun. 9: 249, 1982.PubMedCrossRefGoogle Scholar
  18. 18.
    Ruiz M., Montiel M., Jiménez E., Morell M. Effect of thyroid hormones on angiotensinogen production in rat in vivo and in vitro. J. Endocrinol. 115: 311, 1987.PubMedCrossRefGoogle Scholar
  19. 19.
    Jiménez E., Montiel M., Narváez J.A., Miranda M.T., Parras L., Morell M. The influence of plasma renin substrate on the relationship between plasma renin activity and plasma renin concentration. An experimental study in hyper- and hypothyroid rats. Horm. Metab. Res. 16: 315, 1984.PubMedCrossRefGoogle Scholar
  20. 20.
    Montiel M., Jiménez E., Ruiz M., Morell M. Angiotensin converting enzyme in hyper- and hypothyroid rats. Horm. Metab. Res. 19: 90, 1986.CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1988

Authors and Affiliations

  • E. Jiménez
    • 1
  • M. Ruiz
    • 1
  • M. Montiel
    • 1
  • A. Reyes
    • 1
  • M. Morell
    • 1
  1. 1.Departamento de Bioquimica γ Biologia Molecular, Facultad de MedicinaUniversidad de MalagaMalagaSpain

Personalised recommendations