Advertisement

Journal of Endocrinological Investigation

, Volume 18, Issue 9, pp 702–709 | Cite as

Effect of triiodothyronine administration in experimental myocardial injury

  • R. B. Hsu
  • T. S. Huang
  • Y. S. Chen
  • Shu-Hsun Chu
Article

Abstract

Twelve healthy pigs were subjected to a 20-min, period of regional myocardial ischemia by snaring the left anterior descending coronary artery (LAD) between its first and second diagonal branches. The resulting myocardial injury caused significant acute hemodynamic impairments. Cardiac index declined significantly during reperfusion interval and returned to preischemic level by postoperative day 7. Plasma total triiodothyronine (TT3), free triiodothyronine (FT3) and free fatty acid (FFA) decreased gradually and reached the nadir at 6 h after LAD occlusion. In contrast, plasma reverse triiodothyronine (rT3) increased progressively after LAD occlusion and reperfusion. To investigate the effect of T3 on ischémic myocardium, T3 (0.2 μg/kg/dose; n=5) or saline (placebo; n=6) was administered immediately, 30 min, 60 min, 90 min, and 120 min after reperfusion. Plasma TT3 and FT3 increased dramatically after triiodothyronine supplement but declined to presichemic level at six h after LAD occlusion. The pigs treated with T3 demonstrated a rapid improvement in cardiac index over the reperfusion interval, whereas cardiac index in the placebo group remained depressed. Myocardial oxygen consumption estimated by rate pressure product showed no difference between placebo and T3-treated groups. Oxygen extraction as O2 saturation difference between aorta and coronary sinus was less in T3-treated group. Nine pigs (four in the T3-treated group and five in the placebo group) were subjected to euthanasia with hypertonic KCI solution on postoperative day 7. Myocardial infarct size determined by triphenyltetrazolium chloride (TTC) tissue enzyme staining technique was not significantly different between T3-treated and placebo groups. We concluded that this animal model is a useful model of myocardial injury simulating “euthyroid sick syndrome” as seen in patients with cardiopulmonary bypass, and T3 supplementation after reperfusion significantly enhanced postischemic left ventricular functional recovery but did not affect myocardial oxygen consumption and myocardial infarct size.

Key-words

Triiodothyronine supplementation experimental myocardial injury myocardial infarct size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braunwald E., Kloner R.A. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66: 1146, 1982.PubMedCrossRefGoogle Scholar
  2. 2.
    Scott B.D., Kerber R.E. Clinical and experiment aspects of myocardial stunning. Prog. Cardiovasc. Dis. 35: 61, 1992.PubMedCrossRefGoogle Scholar
  3. 3.
    Charlat M.L., O’Neill P.G., Hartley C.J., Roberts R., Bolli R. Prolonged abnormalities of left ventricular diastolic wall thinning in the “stunned” myocardium in conscious dogs: time course and relation to systolic function. J. Am. Coll. Cardiol. 13: 185, 1989.PubMedCrossRefGoogle Scholar
  4. 4.
    Becker L.C., Levine J.H., Dipaula A.F., Guarnieri T., Aversano T. Reversal of dysfunction in postischemic stunned myocardium by epinephrine and postextrasystolic potentiation. J. Am. Col. Cardiol. 7: 580, 1986.CrossRefGoogle Scholar
  5. 5.
    Kabas J.S., Spratt J.A., Davis J.W., Rankin J.S., Glower D.D. The effects of dopamine on myocardial functional recovery after reversible ischémic injury. J. Thorac. Cardiovasc. Surg 100: 715, 1990.PubMedGoogle Scholar
  6. 6.
    Levey G.S., Klein I. Catecholamine-thyroid hormone interactions and the cardiovascular manifestations of hyperthyroidis. Am. J. Med. 88: 642, 1990.PubMedCrossRefGoogle Scholar
  7. 7.
    Chu S.H., Huang T.S., Hsu R.B., Wang S.S., Wang C.J. Thyroid hormone changes after cardiovascular surgery and clinical implications. Ann. Thorac. Surg. 52: 791, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Robuschi G., Medici D., Fesani F., Barboso G., Montermini M., D’Amato L., Gardini E., Borciani E., Dall’Aglio E., Salvi M., Gnudi A., Roti E. Cardiopulmonary bypass: “a low T4 and T3 syndrome” with blunted thyrotropin (TSH) response to thyrotropin-relasing hormone (TRH). Horm. Res. 23: 151, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Bremner W.F., Taylor K.M., Baird S., Thomson J.E., Thomson J.A., Ratcliffe J.G., Lawrie T.D.V., Bain W.H. Hypothalamopituitary-thyroid axis function during cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 75: 392, 1978.PubMedGoogle Scholar
  10. 10.
    Holland F.W., Brown P.S., Weintraub B.D., Clark R.E. Cardiopulmonary bypass and thyroid function: a “euthyroid sick syndrome”. Ann. Thorac. Surg. 52: 46, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Mitchell I.M., Pollock C.S., Jamieson P.G., Donaghey SFO’B., Paton R.D., Logan R.W. The effects of cardiopulmonary bypass on thyroid function in infants weighing less than five kilograms. J. Thorac. Cardiovasc. Surg. 103: 800, 1992.PubMedGoogle Scholar
  12. 12.
    Bjorn-Hansen Gotzsche L.S., Weeke J. Changes in plasma free thyroid hormones during cardiopulmonary bypass do not indicate triiodothyronine substitution. J. Thorac. Cardiovasc. Surg 104: 273, 1992.Google Scholar
  13. 13.
    Novitzky D., Matthews N., Shawley D., Cooper D.K.C. Zuhdi N. Triiodothyronine in the recovery of stunned myocardium in dogs. Ann. Thorac. Surg. 51: 10, 1991.PubMedCrossRefGoogle Scholar
  14. 14.
    Novitzky D., Human P.A., Cooper D.K.C. Inotropic effect of triiodothyronine following myocardial ischemia and cardiopulmonary bypass: an experimental study in pigs. Ann.Thorac. Surg. 45: 50, 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Novitzky D, Human PA, Cooper DKC. Effect of triiodothyronine (T3) on myocardial high energy phosphates and lactate after ischemia and cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg. 96: 600, 1988.PubMedGoogle Scholar
  16. 16.
    Macoviak J.A., McDugall I.R., Buyer M.F., Brown M., Trazelaar H., Stinson E.B. Significance of thyroid dysfunction in human cardiac allograft procurement. Transplantation 43: 824, 1987.PubMedCrossRefGoogle Scholar
  17. 17.
    Dyke CM., Ding M., Abd-Elfattah A.S., Loesser K., Dignan R.J., Wechsler A.S., Salter D.R. Effects of triiodothyronine supplementation after myocardial ischemia. Ann. Thorac. Surg. 56: 215, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Fishbein M.C., Meerbaum S., Rit J., Lando U., Kanmatsuse K., Mercier J.C., Corday E., Ganz W. Early phase acute myocardial infarct size quantification: validation of the triphenyltetrazolium chloride tissue enzyme staining technique. Am. Heart. J. 101: 593, 1981.PubMedCrossRefGoogle Scholar
  19. 19.
    Vivaldi MT, Kloner RA, Schoen FJ. Triphenyltetrazolium staining of irreversible ischémic injury following coronary artery occlusion in rats. Am. J. Path. 121: 522 1985.PubMedCentralPubMedGoogle Scholar
  20. 20.
    McDonough K.H., Dunn R.B., Griggs D.M. Transmural changes in porcine and canine hearts after circumflex artery occlusion. Am. J. Physiol. 246: H601, 1984.PubMedGoogle Scholar
  21. 21.
    Chopra I.J., Huang T.S., Solomon D.H., Chaudhuri G.C., Teco G.N.C. The role of thryoxine (T4)-binding serum proteins in oleic acid-induced increase in free T4 in nonthyroidal illnesses. J. Clin. Endocrinol. Metab. 6: 776, 1986.CrossRefGoogle Scholar
  22. 22.
    Chopra I.J., Huang T.S., Beredo A., Solmon D.H., Teco G.N.C., Mead J.F. Evidence for an inhibitor of extrathyroidal conversion of thyroxine to 3, 5, 3′- triiodothyronine in sera of patients with nonthyroidal illness. J. Clin. Endocrinol. Metab. 60: 666, 1985.PubMedCrossRefGoogle Scholar
  23. 23.
    Novitzky D., Cooper D.K.C., Human P.A., Reichart B., Zuhdi N. Triiodothyronine therapy for heart donor and recipient. J. Heart. Transplant. 7: 370, 1988.PubMedGoogle Scholar
  24. 24.
    Novitzky D., Cooper D.K.C., Zuhdi N. Triiodothyronine therapy in the cardiac transplant recipient. Transplant. Proc. 5 (suppl. 7) 65,1988.Google Scholar
  25. 25.
    Holland F.W., Brown P.S., Clark R.E. Acute severe postischemic myocardial depression reversed by triiodothyronine. Ann. Thorac. Surg. 54: 301, 1992.PubMedCrossRefGoogle Scholar
  26. 26.
    Dyke C.M., Yeh T., Lehman J.D., Abd-Elfattah A., Ding M., Wechsler A.S., Salter D.R. Triiodothyronine-enhanced left ventricular fucntion after ischémic injruy. Ann. Thorac. Surg. 52: 14, 1991.PubMedCrossRefGoogle Scholar
  27. 27.
    Gay R., Gustafson T.A., Goldman S., Morkin E. Effects of L-thyroxine in rats with chronic heart failure after myocardial infarction. Am. J. Physiol. 253: H341, 1987.PubMedGoogle Scholar
  28. 28.
    Gay R.G., Graham S., Aguirre M., Goldman S., Morkin E. Effects of 10- to 20 day treatment with L-thyroxine in rats with myocardial infarction. Am. J. Physiol. 255: H801, 1988.PubMedGoogle Scholar
  29. 29.
    Liams C., Limas C.J. Influence of thyroid status on intracellular distribution of cardiac adrenocepters. Circ. Res. 61: 824, 1987.CrossRefGoogle Scholar
  30. 30.
    Dillmann W.H. Biochemical basis of thyroid hormone action in the heart. Am. J. Med. 88: 626, 1990.PubMedCrossRefGoogle Scholar
  31. 31.
    Segal J. In vivo effect of 3, 5, 3′-triiodothyronine on calcium uptake in several tissues in the rat: evidence for a physiological role for calium as the first messenger for the prompt action of thyroid hormone at the level of the plasma membrane. Endocrinology 127: 17, 1990.PubMedCrossRefGoogle Scholar
  32. 32.
    Kim D., Smith I.V.V. Effects of thyroid hormone on calcium handling in cultured chick ventricular cells. J. Physiol. 364: 131, 1985.PubMedCentralPubMedGoogle Scholar
  33. 33.
    Morkin E., Flink I.L., Goldman S. Biochemical and physiologic effects of thyroid hormone on cardiac performance. Prog. Cardiovasc. Dis. 25: 435, 1983.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1995

Authors and Affiliations

  • R. B. Hsu
    • 1
  • T. S. Huang
    • 2
  • Y. S. Chen
    • 1
  • Shu-Hsun Chu
    • 1
  1. 1.Department of SurgeryNational Taiwan University HospitalTaipeiTaiwan
  2. 2.Department of MedicineNational Taiwan University HospitalTaipeiTaiwan

Personalised recommendations