Advertisement

Journal of Endocrinological Investigation

, Volume 13, Issue 4, pp 343–349 | Cite as

Molecular basis for the properties of the thyroxine-binding globulin-slow variant in American Blacks

  • M. R. Waltz
  • T. N. Pullman
  • K. Takeda
  • P. Sobieszczyk
  • S. Refetoff
Short Communication

Abstract

Thyroxine — binding globulin — slow (TBG-S), a variant found in 4-12% of Black and Pacific Island populations, is inherited as an X-chromosome linked trait. This variant is detected on isoelectric focusing by the characteristic cathodal shift of all its isoforms, suggesting that the difference resides in the core protein. In addition, TBG-S is slightly more thermolabile, which explains why subjects expressing TBG-S have on the average lower serum TBG, and thus reduced T4, concentrations. We now report the molecular basis for this TBG variant, deduced from sequencing the TBG-S gene of an American Black man. Sequencing of the four coding regions and all intron/exon junctions revealed a single nucleotide substitution in the codon for amino acid 171 of the mature protein. The resulting change of the codon GAC to AAC results in replacement of the normal aspartic acid by asparagine. Since the negative charge provided by the aspartic acid is lost when replaced.by the neutral asparagine, this substitution seems responsible for the cathodal shift on isoelectric focusing and slower electrophoretic mobility of TBG-S. An identical nucleotide substitution was identified in an unrelated American Black man expressing TBG-S. Whether the TBG-S phenotype observed in populations from the Pacific Islands is caused by the same mutation remains to be determined.

Key-words

Thyroxine binding globulin variant African American Isoelectric focusing sequencing mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Robbins J., Cheng S.-Y., Gerschengorno M.C., Glinoer D., Cahnmann H.J., Edelnoch H. Thyroxine transport proteins of plasma. Molecular properties and biosynthesis. Rec. Prog. Horm. Res. 84: 477, 1978.Google Scholar
  2. 2.
    Refetoff S. Thyroid function tests. In: L. J. DeGroot (Eds.), Endocrinology. Grune & Stratton, New York, 1979, p. 387.Google Scholar
  3. 3.
    Gershengorn M.C., Cheng S.-Y., Lippoldt R.E., Lord R.B., Robbins J. Characterization of human thyroxine-binding globulin. Evidence for a single polypeptide chain. J. Biol. Chem. 252:8713, 1977.PubMedGoogle Scholar
  4. 4.
    Hocman G. Human thyroxine binding globulin. Rev. Physiol. Biochem. Pharmacol. 81: 45, 1981.Google Scholar
  5. 5.
    Chandra T., Stackhouse R., Kidd V.J., Robson K.J.H., Woo S.L.C. Sequence homology between human α1-antichy-motrypsin, α1-antitrypsin, and antithrombin III. Biochemistry 22: 5055, 1983.PubMedCrossRefGoogle Scholar
  6. 6.
    Long G.L., Chandra T., Woo S.L.C., Davie E.W., Kurachi K. Complete sequence of the cDNA for human α1-antitrypsin and the gene for the S variant. Biochemistry 23: 4828, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Flink I.L., Bailey T.J., Gustefson T.A., Markham B.E., Morkin E. Complete amino acid sequence of human thyroxine-binding globulin deduced from cloned DNA: closed homology to the serine antiproteases. Proc. Natl. Acad. Sci. (USA) 83: 7708, 1986.CrossRefGoogle Scholar
  8. 8.
    Hammond G.L., Smith C.L., Goping I.S., Underhill D.A., Harley M.J., Reventos J., Musto N.A., Gunsalus G.L., Bardin C.W. Primary structure of human corticosteroid binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitors. Proc. Natl. Acad. Sci. (USA) 84: 5153, 1987.CrossRefGoogle Scholar
  9. 9.
    Nikolai T.F., Seal U.S. X-chromosome linked familial decrease in thyroxinebinding globulin deficiency. J. Clin. Endocrinol. Metab. 25: 835, 1966.CrossRefGoogle Scholar
  10. 10.
    Refetoff S., Robin N.I., Alper C.A. Study of four new kindreds with inherited thyroxine-binding globulin abnormalities: possible mutations of a single gene locus. J. Clin. Invest. 51:848, 972.Google Scholar
  11. 11.
    Burr W.A., Ramsden D.B., Hoffenberg R. Hereditary abnormalities of thyroxine-binding globulin concentration. Q.J. Med. 49:295, 1980.PubMedGoogle Scholar
  12. 12.
    Trent J.M., Flink I.L., Morkin E., Van Tuinen P., Ledbetter D.H. Localization of the human thyroxine-binding globulin gene to the long arm of the X chromosome (Xq21-22) Am. J. Hum. Genet. 41: 428, 1987.PubMedCentralPubMedGoogle Scholar
  13. 13.
    Daiger S.P., Rummel D.P., Wang L., Cavalli-Sforza L.L. Detection of genetic variation with radioactive ligands. IV. X-linked, polymorphic genetic variation of thyroxin-binding globulin (TBG). Am. J. Hum. Genet. 33: 640, 1981.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Daiger S.P., Wildin R.S. Human thyroxine-binding globulin (TBG): Heterogeneity within individuals and among individuals demonstrated by isoelectric focusing. Biochem. Genet. 19: 673, 1981.PubMedCrossRefGoogle Scholar
  15. 15.
    Takamatsu J., Ando M., Weinberg M., Refetoff S. Isoelectric focusing variant thyroxine-binding globulin (TBG-S) in American Blacks: Increased heat lability and reduced concentration in serum. J. Clin. Endocrinol. Metab. 63: 80, 1986PubMedCrossRefGoogle Scholar
  16. 16.
    Kamboh M.I., Ferrel R.E. A sensitive immunoblotting technique to identify thyroxine-binding globulin protein heterogeneity after isoelectric focusing. Biochem. Genet. 24: 273, 1986.PubMedCrossRefGoogle Scholar
  17. 17.
    Kamboh M.I., Kirwood C. Genetic polymorphism of thyroxin-binding globulin (TBG) in the Pacific area. Am. J. Hum. Genet. 36: 646, 1984.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Whitehouse D.B., Hopkinson D.A., Hill A.V.S., Bowden D.K. Analysis of genetic variation in two human thyroxinebinding plasma proteins by immunodetection after isoelectric focusing. Am. J. Hum. Genet. 49: 259, 1985.CrossRefGoogle Scholar
  19. 19.
    Refetoff S. 1989 (Unpublished).Google Scholar
  20. 20.
    Refetoff S., Murata Y. X-chromosome — linked inheritance the variant thyroxine-binding globulin in serum of Australian Aborigines: its physical, chemical and biological properties. J. Clin. Endocrinol. Metab. 60: 356, 1985.PubMedCrossRefGoogle Scholar
  21. 21.
    Takeda K., Mori Y., Sobieszczyk S., Seo H., Dick M., Watson F., Flink I.L., Seino S., Bell G.I., Refetoff S. Sequence of the variant thyroxine-binding globulin of Australian Aborigines: only one of two amino acid remplacements is responsible for its altered properties. J. Clin. Invest. 83:1344, 1989.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Marshall J.S., Pensky J., Williams S. Studies on human thyroxine binding globulin. VIII. Isoelectric focusing evidence for microheterogeneity of thyroxine binding globulin. Arch. Biochem. Biophys. 156: 456, 1978.CrossRefGoogle Scholar
  23. 23.
    Lasne F., Benzerara O., Lasne Y. Role of sialic acid in the microheterogeneity of serum thyroxine binding globulin. Study by two-dimensional isoelectric focusing. Biochim. Biophys. Acta 708: 49, 1982.CrossRefGoogle Scholar
  24. 24.
    Gartner R., Henze R., Horn K., Pickardt C.R., Scriba P.C. Thyroxine-binding globulin: investigation of microheterogeneity. J. Clin. Endocrinol. Metab. 52: 657, 1981.PubMedCrossRefGoogle Scholar
  25. 25.
    Grimaldi S., Bartalena L., Ramacciotti C., Robbins J. Polymorphism of human thyroxine-binding globulin. J. Clin. Endocrinol. Metab. 57:1186, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Bell G.I., Karam J.H., Rutter W.J. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. Natl. Acad. Sci. (USA) 78: 5759, 1981.CrossRefGoogle Scholar
  27. 27.
    Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 481, 1988.CrossRefGoogle Scholar
  28. 28.
    Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. (USA) 74: 5463, 1977.PubMedCentralCrossRefGoogle Scholar
  29. 29.
    Mori Y., Seino S., Takeda K., Flink I.L., Murata Y., Bell G.I., Refetoff S. A mutation causing reduced biological activity and stability of thyroxine-binding globulin probably as a result of abnormal glycosylation of the molecule. Mol. Endocrinol. 3: 575, 1989.PubMedCrossRefGoogle Scholar
  30. 30.
    Ain K.B., Mori Y., Refetoff S. Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: a mechanism for estrogen induced elevation of serum TBG concentration. J. Clin. Endocrinol. Metab. 65: 689, 1987.PubMedCrossRefGoogle Scholar
  31. 31.
    Wilson J.M., Kelly W.N. Molecular basis of hypoxanthine-guanine phosphoribosyl-transferase deficiency in a patient with the Lesch-Nyhan syndrome. J. Clin. Invest. 77:1331, 1983.CrossRefGoogle Scholar
  32. 32.
    Menzel H.-J., Assmann G., Rail S.C. Jr., Weisgraber K.H., Mahley R.W. Human apolipoprotein A-l polimorphism: identification of amino acid substitutions in three electrophoretic variants of the Munster-3 type. J. Biol. Chem. 259: 3070, 1984.PubMedGoogle Scholar
  33. 33.
    Moo-Penn W.F., Je D.L., Johnson M.H., Wilson S.M., Therrell B. Jr., Schmidt R.M. Hemoglobin Tarrant: α126(H9) Asp→Asn. A new hemoglobin variant in the α1β1 contact region showing high oxygen affinity and reduced cooperativity. Biochim. Biophys. Acta 490: 443, 1977.PubMedCrossRefGoogle Scholar
  34. 34.
    Ohba Y., Miyaji T., Matsuoka M., Takeda I., Fukuba Y., Shibata S., Ohkura K. Hemoglobin Matsue-Oki: Alpha 75 (EF 4) aspartic acid→asparagine. Hemoglobin 1: 383, 1977.PubMedCrossRefGoogle Scholar
  35. 35.
    Brimhall B., Duerst M., Hollán S.R., Stenzel P., Szelényi J., Jones R.T. Structural characterizations of hemoglobins J-Buda [α61 (E 10) Lys→Asn] and G-Pest [α74 (EF 3) Asp→Ans]. Biochim. Biophys. Acta 336: 344, 1974.CrossRefGoogle Scholar
  36. 36.
    Sugihara J., Yokota E., Kagimoto M., Naito Y., Imamura T. Hemoglobin G Waimanalo: α64 (E 13) aspartic acid→asparagine observed in a Japanese family. Hemoglobin 8: 79, 1984.PubMedCrossRefGoogle Scholar
  37. 37.
    Takamatsu J. Refetoff S., Charbonneau M., Dussault J.H. Two new inherited defects of the thyroxine-binding globulin (TBG) molecule presenting as partial TBG deficiency. J. Clin. Invest. 79:833, 1987.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Murata Y., Takamatsu J., Refetoff S. Inherited abnormality of thyroxine-binding globulin with no demonstrable thyroxine-binding activity and high serum levels of denatured thyroxine-binding globulin. N. Engl. J. Med. 314:694, 1986PubMedCrossRefGoogle Scholar
  39. 39.
    Murata Y., Refetoff S., Same D.H., Dick M., Watson F. Variant thyroxine-binding globulin in serum of Australian Aborigines: its physical, chemical and biological properties. J. Endocrinol. Invest. 8: 225, 1985.PubMedCrossRefGoogle Scholar
  40. 40.
    Mori Y., Takeda K., Charbonneau M., Refetoff S. Cloning, and analysis of the coding sequence of the thyroxine-binding globulin (TBG) gene from a subject with inherited complete TBG deficiency. J. Clin. Endocrinol. Metab. 70: 804, 1989.CrossRefGoogle Scholar
  41. 41.
    Pemberton P.A., Stein P.E., Pepys M.B., Potter J.M., Carell R.W. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336: 257, 1988.PubMedCrossRefGoogle Scholar
  42. 42.
    Refetoff S. Inherited thyroxine-binding globulin (TBG) abnormalities in man. Endocr. Rev. 10:275, 1989.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1990

Authors and Affiliations

  • M. R. Waltz
    • 1
  • T. N. Pullman
    • 1
  • K. Takeda
    • 1
  • P. Sobieszczyk
    • 1
  • S. Refetoff
    • 1
    • 2
  1. 1.Department of MedicineThe University of ChicagoChicagoUSA
  2. 2.Department of PediatricsThe University of ChicagoChicagoUSA

Personalised recommendations