Journal of Endocrinological Investigation

, Volume 34, Issue 5, pp 376–382

The Y chromosome-linked copy number variations and male fertility

  • C. Krausz
  • C. Chianese
  • C. Giachini
  • E. Guarducci
  • I. Laface
  • G. Forti
Short Review

Abstract

Since the first definition of the AZoospermia Factor (AZF) regions, the Y chromosome has become an important target for studies aimed to identify genetic factors involved in male infertility. This chromosome is enriched with genes expressed exclusively or prevalently in the testis and their absence or reduction of their dosage is associated with spermatogenic impairment. Due to its peculiar structure, full of repeated homologous sequences, the Y chromosome is predisposed to structural rearrangements, especially deletions/duplications. This review discusses what is currently known about clinically relevant Y chromosome structural variations in male fertility, mainly focusing on copy number variations (CNVs). These CNVs include classical AZF deletions, gr/gr deletion and TSPY1 CNV. AZF deletions are in a clear-cut causeeffect relationship with spermatogenic failure and they also have a prognostic value for testis biopsy. gr/gr deletion represents the unique example in andrology of a proven genetic risk factor, providing an eight-fold increased risk for oligozoospermia in the Italian population. Studies on TSPY1 CNV have opened new perspectives on the role of this gene in spermatogenic efficiency. Although studies on the Y chromosome have importantly contributed to the identification of new genetic causes and thus to the improvement of the diagnostic work-up for severe male factor infertility, there is still about 50% of infertile men in whom the etiology remains unknown. While searching for new genetic factors on other chromosomes, our work on the Y chromosome still needs to be completed, with special focus on the biological function of the Y genes.

Key-words

CNV gr/gr deletion male infertility spermatogenesis TSPY Y chromosome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Simoni M, Bakker E, Krausz C. EAA/EMQN best practice guidelines for molecular diagnosis of y-chromosomal microdeletions. State of the art 2004. Int J Androl 2004, 27: 240–9.Google Scholar
  2. 2.
    Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003, 423: 825–37.PubMedCrossRefGoogle Scholar
  3. 3.
    Jobling MA. Copy number variation on the human Y chromosome. Cytogenet Genome Res 2008, 123: 253–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Turner DJ, Miretti M, Rajan D, et al. Germ line rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 2008, 40: 90–5.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Krausz C, Degl’Innocenti S. Y chromosome and male infertility: update, 2006. Front Biosci 2006, 11: 3049–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet 1976, 34: 119–24.PubMedCrossRefGoogle Scholar
  7. 7.
    Vogt PH, Edelmann A, Kirsch S, et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet 1996, 5: 933–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Repping S, Skaletsky H, Lange J, et al. Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 2002, 71: 906–22.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Blanco P, Shlumukova M, Sargent CA, Jobling MA, Affara N, Hurles ME. Divergent outcomes of intrachromosomal recombination on the human Y chromosome: male infertility and recurrent polymorphism. J Med Genet 2000, 37: 752–8.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Kamp C, Hirschmann P, Voss H, Huellen K, Vogt PH. Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum Mol Genet 2000, 9: 2563–72.PubMedCrossRefGoogle Scholar
  11. 11.
    Sun C, Skaletsky H, Rozen S, et al. Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum Mol Genet 2000, 9: 2291–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Kuroda-Kawaguchi T, Skaletsky H, Brown LG, et al. The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 2001, 29: 279–86.PubMedCrossRefGoogle Scholar
  13. 13.
    Krausz C, Forti G, McElreavey K. The Y chromosome and male fertility and infertility. Int J Androl 2003, 26: 70–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Maurer B, Gromoll J, Simoni M, Nieschlag E. Prevalence of Y chromosome microdeletions in infertile men who consulted a tertiary care medical centre: the Munster experience. Andrologia 2001, 33: 27–33.PubMedCrossRefGoogle Scholar
  15. 15.
    Oates RD, Silber S, Brown LG, Page DC. Clinical characterization of 42 oligospermic or azoospermic men with microdeletion of the AZFc region of the Y chromosome, and of 18 children conceived via ICSI. Hum Reprod 2002, 17: 2813–24.PubMedCrossRefGoogle Scholar
  16. 16.
    Frydelund-Larsen L, Krausz C, Leffers H, et al. Inhibin B: a marker for the functional state of the seminiferous epithelium in patients with azoospermia factor C microdeletions. J Clin Endocrinol Metab 2002, 87: 5618–24.PubMedCrossRefGoogle Scholar
  17. 17.
    Brandell RA, Mielnik A, Liotta D, et al. AZFb deletions predict the absence of spermatozoa with testicular sperm extraction: preliminary report of a prognostic genetic test. Hum Reprod 1998, 13: 2812–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Krausz C, Quintana-Murci L, McElreavey K. Prognostic value of Y deletion analysis: what is the clinical prognostic value of Y chromosome microdeletion analysis? Hum Reprod 2000, 15: 1431–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Fattoruso O, Zarrilli S, Coto I, De Rosa M, Lombardi G, Sacchetti L. Prevalence of Y microdeletions in azoospermic and severe oligozoospermic men in Southern Italy: application of a rapid capillary electrophoresis method. J Endocrinol Invest 2009, 32: 223–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Kent-First M, Muallem A, Shultz J, et al. Defining regions of the Y-chromosome responsible for male infertility and identification of a fourth AZF region (AZFd) by Y-chromosome microdeletion detection. Mol Reprod Dev 1999, 53: 27–41.PubMedCrossRefGoogle Scholar
  21. 21.
    Repping S, Skaletsky H, Brown L, et al. Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet 2003, 35: 247–51.PubMedCrossRefGoogle Scholar
  22. 22.
    Reijo R, Lee TY, Salo P, et al. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet 1995, 10: 383–93.PubMedCrossRefGoogle Scholar
  23. 23.
    Yen PH. Putative biological functions of the DAZ family. Int J Androl 2004, 27: 125–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Lahn BT, Tang ZL, Zhou J, et al. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Ntl Acad Sci USA 2002, 99: 8707–12.CrossRefGoogle Scholar
  25. 25.
    Visser L, Westerveld GH, Korver CM, et al. Y chromosome gr/gr deletions are a risk factor for low semen quality. Hum Reprod 2009, 24: 2667–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Giachini C, Laface I, Guarducci E, Balercia G, Forti G, Krausz C. Partial AZFc deletions and duplications: clinical correlates in the Italian population. Hum Genet 2008, 124: 399–410.PubMedCrossRefGoogle Scholar
  27. 27.
    Navarro-Costa P, Goncalves J, Plancha CE. The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. Hum Reprod Update 2010, 16: 525–42.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Yang Y, Ma M, Li L, et al. Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population. Int J Androl 33: 745–54.Google Scholar
  29. 29.
    Sin HS, Koh E, Shigehara K, et al. Features of constitutive gr/gr deletion in a Japanese population. Hum Reprod 2010, 25: 2396–403.PubMedCrossRefGoogle Scholar
  30. 30.
    Krausz C, Giachini C, Xue Y, et al. Phenotypic variation within European carriers of the Y-chromosomal gr/gr deletion is independent of Y-chromosomal background. J Med Genet 2009, 46: 21–31.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Giachini C, Guarducci E, Longepied G, et al. The gr/gr deletion(s): a new genetic test in male infertility? J Med Genet 2005, 42: 497–502.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Fernandes S, Huellen K, Goncalves J, et al. High frequency of DAZ1/DAZ2 gene deletions in patients with severe oligozoospermia. Mol Hum Reprod 2002, 8: 286–98.PubMedCrossRefGoogle Scholar
  33. 33.
    Ferlin A, Tessari A, Ganz F, et al. Association of partial AZFc region deletions with spermatogenic impairment and male infertility. J Med Genet 2005, 42: 209–13.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Yang Y, Xiao CY, AZC, Zhang SZ, Li X, Zhang SX. DAZ1/DAZ2 cluster deletion mediated by gr/gr recombination per se may not be sufficient for spermatogenesis impairment: a study of Chinese normozoospermic men. Asian J Androl 2006, 8: 183–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Tuttelmann F, Rajpert-De Meyts E, Nieschlag E, Simoni M. Gene polymorphisms and male infertility — a meta-analysis and literature review. Reprod Biomed Online 2007, 15: 643–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Stouffs K, Lissens W, Tournaye H, Haentjens P. What about gr/gr deletions and male infertility? Systematic review and meta-analysis. Hum Reprod Update 2011, 17: 197–209.CrossRefGoogle Scholar
  37. 37.
    Zhang F, Lu C, Li Z, et al. Partial deletions are associated with an increased risk of complete deletion in AZFc: a new insight into the role of partial AZFc deletions in male infertility. J Med Genet 2007, 44: 437–44.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Lu C, Zhang J, Li Y, et al. The b2/b3 subdeletion shows higher risk of spermatogenic failure and higher frequency of complete AZFc deletion than the gr/gr subdeletion in a Chinese population. Hum Mol Genet 2009, 18: 1122–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Repping S, van Daalen SK, Brown LG, et al. High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat Genet 2006, 38: 463–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Lin YW, Hsu LC, Kuo PL, et al. Partial duplication at AZFc on the Y chromosome is a risk factor for impaired spermatogenesis in Han Chinese in Taiwan. Hum Mutat 2007, 28: 486–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Tyler-Smith C, Krausz C. The will-o’-the-wisp of genetics — hunting for the azoospermia factor gene. N Engl J Med 2009, 360: 925–7.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Sun C, Skaletsky H, Birren B, et al. An azoospermic man with a de novo point mutation in the Y-chromosomal gene USP9Y. Nat Genet 1999, 23: 429–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Luddi A, Margollicci M, Gambera L, et al. Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med 2009, 360: 881–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Krausz C, Degl’Innocenti S, Nuti F, et al. Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum Mol Genet 2006, 15: 2673–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Brown GM, Furlong RA, Sargent CA, et al. Characterisation of the coding sequence and fine mapping of the human DFFRY gene and comparative expression analysis and mapping to the Sxrb interval of the mouse Y chromosome of the Dffry gene. Hum Mol Genet 1998, 7: 97–107.PubMedCrossRefGoogle Scholar
  46. 46.
    Giachini C, Nuti F, Turner DJ, et al. TSPY1 copy number variation influences spermatogenesis and shows differences among Y lineages. J Clinical Endocrinol Metab 2009, 94: 4016–22.CrossRefGoogle Scholar
  47. 47.
    Krausz C, Giachini C, Forti G. TSPYand Male Fertility. Genes 2010, 1: 308–16.PubMedCentralCrossRefPubMedGoogle Scholar
  48. 48.
    Lau YF, Li Y, Kido T. Gonadoblastoma locus and the TSPY gene on the human Y chromosome. Birth Defects Res C Embryo Today 2009, 87: 114–22.PubMedCrossRefGoogle Scholar
  49. 49.
    Schöner A, Adham I, Mauceri G, et al. Partial rescue of the KIT-deficient testicular phenotype in KitW-v/KitW-v Tg (TSPY) mice. Biol Reprod 83: 20–6.Google Scholar
  50. 50.
    Vodicka R, Vrtel R, Dusek L, et al. TSPY gene copy number as a potential new risk factor for male infertility. Reprod Biomed Online 2007, 14: 579–87.PubMedCrossRefGoogle Scholar
  51. 51.
    Nickkholgh B, Noordam MJ, Hovingh SE, van Pelt AM, van der Veen F, Repping S. Y chromosome TSPY copy numbers and semen quality. Fertil Steril 2010, 94: 1744–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Tyler-Smith C. An evolutionary perspective on Y-chromosomal variation and male infertility. Int J Androl 2008, 31: 376–82.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Mathias N, Bayés M, Tyler-Smith C. Highly informative compound haplotypesforthe human Y chromosome. Hum Mol Genet 1994, 3: 115–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Nathanson KL, Kanetsky PA, Hawes R, et al. The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am J Hum Genet 2005, 77: 1034–43.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2011

Authors and Affiliations

  • C. Krausz
    • 1
  • C. Chianese
    • 1
  • C. Giachini
    • 1
  • E. Guarducci
    • 1
  • I. Laface
    • 1
  • G. Forti
    • 2
  1. 1.Sexual Medicine and Andrology Unit, Department of Clinical PhysiopathologyUniversity of FlorenceFlorenceItaly
  2. 2.Endocrine Unit, Department of Clinical PhysiopathologyUniversity of FlorenceFlorenceItaly

Personalised recommendations