Journal of Endocrinological Investigation

, Volume 34, Issue 4, pp 317–323 | Cite as

Vitamin K, bone fractures, and vascular calcifications in chronic kidney disease: An important but poorly studied relationship

  • M. Fusaro
  • G. Crepaldi
  • S. Maggi
  • F. Galli
  • A. D’Angelo
  • L. Calò
  • S. Giannini
  • D. Miozzo
  • M. Gallieni
Review Article

Abstract

Vitamin K denotes a group of lipophilic vitamins determining post- translational modification of proteins. There are 2 main forms of vitamin K: vitamin K1 (phylloquinone, found in vegetables); vitamin K2 (menaquinone, produced by bacteria in the intestine and in fermented foods). Vitamin K stores are limited in humans, but it can be recycled. Vitamin K1 is principally transported to the liver, regulating the production of coagulation factors. Vitamin K2, instead, is also transported to extra- hepatic tissues, such as bone and arteries, regulating the activity of matrix Gla- protein (MGP) and osteocalcin [bone Gla- protein (BGP)]. In patients with chronic kidney disease (CKD), cardiovascular mortality is the first cause of death. Some pathogenetic mechanisms of vascular calcification (such as hyperparathyroidism, hyperphosphatemia, hypercalcemia, role of vitamin D) have been widely investigated, but the potential role of vitamin K is still uncertain. Vitamin K could play a key role, as it transforms glutamic acid residues into γ- carboxyglutamic acid, through a carboxylation process, makings both MGP (cMGP) and BGP (cBGP) biologically active. cMGP inhibits vascular calcifications (VC), while cBGP has an important role for a proper mineralization process. Uncarboxylated MGP and BGP (ucMGP and ucBGP) concentrations are indirect markers of vitamin K2 deficiency. The purpose of this review is to analyze the current literature to understand the relationship between vitamin K2 status, fragility fractures and VC in CKD patients. This analysis could be of help in planning investigations of Vitamin K status and its possible supplementation in CKD patients to avert fragility fractures and VC.

Key-words

Dialysis fractures menaquinone osteoporosis phylloquinone vascular calcifications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shearer MJ. Vitamin K. Lancet 1995, 345: 229–34.PubMedCrossRefGoogle Scholar
  2. 2.
    Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis 2000, 30: 298–307.PubMedGoogle Scholar
  3. 3.
    Bugel S. Vitamin K and bone health. Proc Nutr Soc 2003, 62: 839–43.PubMedCrossRefGoogle Scholar
  4. 4.
    Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998, 128: 785–8.PubMedGoogle Scholar
  5. 5.
    Kohlmeier M, Salomon A, Saupe J, Shearer MJ. Transport of vitamin Kto bone in humans. J Nutr 1996, 126 (Suppl): 1192S–6S.PubMedGoogle Scholar
  6. 6.
    Kohlmeier M, Saupe J, Schaefer K, Asmus G. Bone fracture history and prospective bone fracture risk of hemodialysis patients are related to apolipoprotein E genotype. Calcif Tissue Int 1998, 62: 278–81.PubMedCrossRefGoogle Scholar
  7. 7.
    Krueger T, Westenfeld R, Ketteler M, Schurgers LJ, Floege J. Vitamin K deficiency in CKD patients: a modifiable risk factor for vascular calcification? Kidney Int 2009, 76: 18–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Schurgers LJ, Teunissen KJ, Hamulyák K, Knapen MH, Vik H, Vermeer C. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 2007, 109: 3279–83.PubMedCrossRefGoogle Scholar
  9. 9.
    Nieves JW. Osteoporosis: the role of micronutrients. Am J Clin Nutr 2005, 81: 1232S–9S.PubMedGoogle Scholar
  10. 10.
    Fouque D, Vennegoor M, Ter Wee P et al. EBPG guideline on nutrition. Nephrol Dial Transplant 2007, 22(Suppl 2): ii45–87.PubMedGoogle Scholar
  11. 11.
    Kohlmeier M, Saupe J, Shearer MJ, Schaefer K, Asmus G. Bone health of adult hemodialysis patients is related to vitamin K status. Kidney Int 1997, 51: 1218–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Pilkey RM, Morton AR, Boffa MB, et al. Subclinical vitamin K deficiency in hemodialysis patients. Am J Kidney Dis 2007, 49: 432–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Neogi T, Booth SL, Zhang YQ, et al. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum 2006, 54: 1255–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Kohlmeier M, Saupe J, Drossel HJ, Shearer MJ. Variation of phylloquinone (vitamin K1) concentrations in hemodialysis patients. Thromb Haemost 1995, 74: 1252–4.PubMedGoogle Scholar
  15. 15.
    Schurgers LJ, Cranenburg EC, Vermeer C. Matrix Gla-protein: the calcification inhibitor in need of vitamin K. Thromb Haemost 2008, 100: 593–603.PubMedGoogle Scholar
  16. 16.
    Zebboudj AF, Imura M, Boström K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem 2002, 277: 4388–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Murshed M, Schinke T, McKee MD, Karsenty G. Extracellular matrix mineralization is regulated locally; different roles of two Glacontaining proteins. J Cell Biol 2004, 165: 625–30.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Munroe PB, Olgunturk RO, Fryns JP, et al. Mutations in the gene encoding the human matrix Gla protein cause Keutel syndrome. Nat Genet 1999, 21: 142–4.PubMedCrossRefGoogle Scholar
  19. 19.
    Meier M, Weng LP, Alexandrakis E, Rüschoff J, Goeckenjan G. Tracheobronchial stenosis in Keutel syndrome. Eur Respir J 2001, 17: 566–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Luo G, Ducy P, McKee MD, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1997, 386: 78–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Shearer MJ. Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr Metab Care 2000, 3: 433–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Sigrist M, Bungay P, Taal MW, McIntyre CW. Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol Dial Transplant 2006, 21: 707–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 2002, 39: 695–701.PubMedCrossRefGoogle Scholar
  24. 24.
    Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000, 342: 1478–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Genovesi S, Pogliani D, Faini A, et al. Prevalence of atrial fibrillation and associated factors in a population of long-term hemodialysis patients. Am J Kidney Dis 2005, 46: 897–902.PubMedCrossRefGoogle Scholar
  26. 26.
    Wizemann V, Tong L, Satayathum S, et al. Atrial fibrillation in hemodialysis patients: clinical features and associations with anticoagulant therapy. Kidney Int 2010, 77: 1098–106.PubMedCrossRefGoogle Scholar
  27. 27.
    Genovesi S, Santoro A. Warfarin and stroke outcomes in hemodialysis patients with atrial fibrillation. J Am Soc Nephrol 2009, 20: 2090–2.PubMedCrossRefGoogle Scholar
  28. 28.
    Schurgers LJ, Aebert H, Vermeer C, Bültmann B, Janzen J. Oral anticoagulant treatment: friend or foe in cardiovascular disease. Blood 2004, 104: 3231–2.PubMedCrossRefGoogle Scholar
  29. 29.
    Krüger T, Floege J. Coumarin use in dialysis patients with atrial fibrillation--more harm than benefit? Nephrol Dial Transplant 2009, 24: 3284–5.PubMedCrossRefGoogle Scholar
  30. 30.
    Price PA, Faus SA, Williamson MK. Warfarin causes rapid calcification of the elastic lamellae in rat arteries and heart valves. Arterioscler Thromb Vasc Biol 1998, 18: 1400–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Price PA, Faus SA, Williamson MK. Warfarin-induced artery calcification is accelerated by growth and vitamin D. Arterioscler Thromb Vasc Biol 2000, 20: 317–27.PubMedCrossRefGoogle Scholar
  32. 32.
    Howe AM, Webster WS. Warfarin exposure and calcification of the arterial system in the rat. Int J Exp Pathol 2000, 81: 51–6.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Holden RM, Sanfilippo AS, Hopman WM, Zimmerman D, Garland JS, Morton AR. Warfarin and aortic valve calcification in hemodialysis patients. J Nephrol 2007, 20: 417–22.PubMedGoogle Scholar
  34. 34.
    Koos R, Krueger T, Westenfeld R, et al. Relation of circulating Matrix Gla-Protein and anticoagulation status in patients with aortic valve calcification. Thromb Haemost 2009, 101: 706–13.PubMedGoogle Scholar
  35. 35.
    Gage BF, Birman-Deych E, Radford MJ, Nilasena DS, Binder EF. Risk of osteoporotic fracture in elderly patients taking warfarin: results from National Registry of Atrial Fibrillation 2. Arch Intern Med 2006, 166: 241–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Mamdani M, Upshur RE, Anderson G, Bartle BR, Laupacis A. Warfarin therapy and risk of hip fracture among elderly patients. Pharmacotherapy 2003, 23: 1–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Booth SL, Mayer J. Warfarin use and fracture risk. Nutr Rev 2000, 58: 20–2.PubMedCrossRefGoogle Scholar
  38. 38.
    Cranenburg EC, Vermeer C, Koos R, et al. The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarkerfor cardiovascular calcification. J Vasc Res 2008, 45: 427–36.PubMedCrossRefGoogle Scholar
  39. 39.
    Schurgers LJ, Barreto DV, Barreto FC, et al. The circulating inactive form of matrix Gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 2010, 5: 568–75.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Geleijnse JM, Vermeer C, Grobbee DE, et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 2004, 134: 3100–5.PubMedGoogle Scholar
  41. 41.
    Reichel H. No effect of vitamin K1 supplementation on biochemical bone markers in hemodialysis patients. Nephrol Dial Transplant 1999, 14: 249–50.PubMedCrossRefGoogle Scholar
  42. 42.
    Małyszko J, Wołczyński S, Skrzydlewska E, Małyszko JS, Myśliwiec M. Vitamin K status in relation to bone in patients with renal failure. Am J Nephrol 2002, 22: 504–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Westenfeld R, Krüger T, Schlieper G, et al. Vitamin K2 supplementation reduces the elevated inactive form of the calcification inhibitor matrix GLA protein in hemodialysis patients. J Am Soc Nephrol 2008, 19: 11A (abstract)CrossRefGoogle Scholar
  44. 44.
    Forli L, Bollerslev J, Simonsen S, et al. Dietary vitamin K2 supplement improves bone status after lung and heart transplantation. Transplantation 2010, 89: 458–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Sugimoto T, Yamakado M, Matsushita K, Iwamoto T, Tagawa H. Pharmacodynamics of menatetrenone and effects on bone metabolism in continuous ambulatory peritoneal dialysis patients. J Int Med Res 2002, 30: 566–75.PubMedCrossRefGoogle Scholar
  46. 46.
    Price PA, Parthemore JG, Deftos LJ. New biochemical marker for bone metabolism. Measurement by radioimmunoassay of bone GLA protein in the plasma of normal subjects and patients with bone disease. J Clin Invest 1980, 66: 878–83.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Zhang R, Ducy P, Karsenty G. 1,25-dihydroxyvitamin D3 inhibits osteocalcin expression in mouse through an indirect mechanism. J BiolChem 1997, 272: 110–6.Google Scholar
  48. 48.
    Szulc P, Chapuy MC, Meunier J, et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fractures in elderly women. J Clin Invest 1993, 91: 1769–74.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Nakao M, Nishiuchi Y, Nakata M, Kimura T, Sakakibara S. Synthesis of human osteocalcins: gamma-carboxyglutamic acid at position 17 is essential for a calcium-dependent conformational transition. Pept Res 1994, 7: 171–4.PubMedGoogle Scholar
  50. 50.
    Koshihara Y, Hoshi K. Vitamin K2 enhances osteocalcin accumulation in the extracellular matrix of human osteoblasts in vitro. J Bone Miner Res 1997, 12: 431–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Ingram RT, Park Y, Clarke BL, Fitzpatrick LA. Age and gender-related changes in the distribution of osteocalcin in the extracellular matrix of normal male and female bone. Possible involvement of osteocalcin in bone remodeling. J Clin Invest 1994, 93: 989–97.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature 1996, 382: 448–52.PubMedCrossRefGoogle Scholar
  53. 53.
    Sasaki N, Kusano E, Takahashi H, et al. Vitamin K2 inhibits glucocorticoid-induced bone loss partly by preventing the reduction of osteoprotegerin (OPG). J Bone Miner Metab 2005, 23: 41–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Fusaro M, D’Angelo A, Gallieni M. Vertebral fractures in patients on dialysis: a clinically relevant problem with insufficient investigation. NDT Plus 2008, 1: 464–5.Google Scholar
  55. 55.
    Alem AM, Sherrard DJ, Gillen DL, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int 2000, 58: 396–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Atsumi K, Kushida K, Yamazaki K, Shimizu S, Ohmura A, Inoue T. Risk factors for vertebral fractures in renal osteodystrophy. Am J Kidney Dis 1999, 33: 287–93.PubMedCrossRefGoogle Scholar
  57. 57.
    Rodríguez-García M, Gómez-Alonso C, Naves-Díaz M, et al. Prevalence of vertebral fractures and aortic calcifications in hemodialysis patients: comparison with a population of the same age and sex. Nefrologia 2003, 23(Suppl 2): 106–11.PubMedGoogle Scholar
  58. 58.
    Jamal SA, Gilbert J, Gordon C, Bauer DC. Cortical pQCT measures are associated with fractures in dialysis patients. J Bone Miner Res 2006, 21: 543–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Rodríguez-García M, Gómez-Alonso C, Naves-Díaz M, Díaz-López JB, Díaz-Corte C, Cannata-Andía JB, Asturias Study Group. Vascular calcifications, vertebral fractures and mortality in haemodialysis patients. Nephrol Dial Transplant 2009, 24: 239–46.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Riggs BL, Hodgson SF, O’ Fallon WM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med 1990, 322: 802–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semi-quantitative technique. J Bone Miner Res 1993, 8: 1137–48.PubMedCrossRefGoogle Scholar
  62. 62.
    Guglielmi G, Diacinti D, van Kuijk C, et al. Vertebral morphometry: current methods and recent advances. Eur Radiol 2008, 18: 1484–96.PubMedCrossRefGoogle Scholar
  63. 63.
    Guglielmi G, Stoppino LP, Placentino MG, D’ Errico F, Palmieri F. Reproducibility of a semi-automatic method for 6-point vertebral morphometry in a multi-centre trial. Eur J Radiol 2009, 69: 173–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Arboleya L, Díaz-Curiel M, Del Río L, et al; OSTEOXPRESS study investigators. Prevalence of vertebral fracture in postmenopausal women with lumbar osteopenia using MorphoXpress(R) (OSTEOXPRESS Study). Aging Clin Exp Res 2010, 22: 419–26.PubMedCrossRefGoogle Scholar
  65. 65.
    Lindsay R, Silverman SL, Cooper C et al. Risk of new vertebral fracture in the year following a fracture. JAMA 2001, 285: 320–3.PubMedCrossRefGoogle Scholar
  66. 66.
    Hasserius R, Karlsson MK, Nilsson BE, Redlund-Johnell I, Johnell O; European Vertebral Osteoporosis Study. Prevalent vertebral deformities predict increased mortality and increased fracture rate in both men and women: a 10-year population-based study of 598 individuals from the Swedish cohort in the European Vertebral Osteoporosis Study. Osteoporos Int 2003, 14: 61–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Naves M, Rodríguez-García M, Díaz-López JB, Gómez-Alonso C, Cannata-Andía JB. Progression of vascular calcifications is associated with greater bone loss and increased bone fractures. Osteoporos Int 2008, 19: 1161–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Fusaro M, D’Angelo A, Scalzo G, Gallieni M, Giannini S, Guglielmi G. Vertebral fractures in dialysis: endocrinological disruption of the bone-kidney axis. J Endocrinol Invest 2010, 33: 347–52.PubMedCrossRefGoogle Scholar
  69. 69.
    Coco M, Rush H. Increased incidence of hip fractures in dialysis patients with low serum parathyroid hormone. Am J Kidney Dis 2000, 36: 1115–21.PubMedCrossRefGoogle Scholar
  70. 70.
    Jadoul M, Albert JM, Akiba T, et al. Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int 2006, 70: 1358–66.PubMedCrossRefGoogle Scholar
  71. 71.
    Danese MD, Kim J, Doan QV, Dylan M, Griffiths R, Chertow GM. PTH and the risks for hip, vertebral, and pelvic fractures among patients on dialysis. Am J Kidney Dis 2006, 47: 149–56.PubMedCrossRefGoogle Scholar
  72. 72.
    Cockayne S, Adamson J, Lanham-New S, Shearer MJ, Gilbody S, Torgerson DJ. Vitamin K and prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006, 166: 1256–61.PubMedCrossRefGoogle Scholar
  73. 73.
    Shiraki M, Shiraki Y, Aoki C, Miura M. Vitamin K2 (menatetrenone) effectively prevents fractures and sustains lumbar bone mineral density in osteoporosis. J Bone Miner Res 2000, 15: 515–21.PubMedCrossRefGoogle Scholar
  74. 74.
    Emaus N, Gjesdal CG, Almås B, et al. Vitamin K2 supplementation does not influence bone loss in early menopausal women: a randomised double-blind placebo-controlled trial. Osteoporosis Int 2010, 21: 1731–40.CrossRefGoogle Scholar
  75. 75.
    Teng M, Wolf M, Lowrie E, Ofsthun N, Lazarus JM, Thadhani R. Survival of patients undergoing hemodialysis with paricalcitol or calcitriol therapy. N Engl J Med 2003, 349: 446–56.PubMedCrossRefGoogle Scholar
  76. 76.
    Teng M, Wolf M, Ofsthun MN, et al. Activated injectable vitamin D and hemodialysis survival: a historical cohort study. J Am Soc Nephrol 2005, 16: 1115–25.PubMedCrossRefGoogle Scholar
  77. 77.
    Bolland MJ, Avenell A, Baron JA, et al. Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ 2010, 341: c3691.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2011

Authors and Affiliations

  • M. Fusaro
    • 1
  • G. Crepaldi
    • 2
  • S. Maggi
    • 2
  • F. Galli
    • 3
  • A. D’Angelo
    • 4
  • L. Calò
    • 5
  • S. Giannini
    • 1
  • D. Miozzo
    • 2
  • M. Gallieni
    • 6
  1. 1.Department of Medical and Surgical Sciences, Clinica Medica 1University of Padova. Policlinico IV pianoPadovaItaly
  2. 2.CNR Aging SectionInstitute of NeurosciencePadua
  3. 3.Laboratory of Biochemistry and Nutrition, Department of Internal Medicine, School of PharmacyUniversity of PerugiaPerugia
  4. 4.Nephrology UnitUniversity of PaduaItaly
  5. 5.Department of Clinical and Experimental Medicine, Medical Clinic 4University of PaduaPadua
  6. 6.Nephrology and Dialysis UnitOspedale San Carlo BorromeoMilanItaly

Personalised recommendations