Journal of Endocrinological Investigation

, Volume 32, Issue 3, pp 248–252 | Cite as

Assessment of left ventricular functions by tissue Doppler echocardiography in patients with Cushing’s disease

  • N. A. Bayram
  • R. Ersoy
  • C. Aydin
  • K. Gul
  • T. Keles
  • O. Topaloglu
  • T. Durmaz
  • E. Bozkurt
  • B. Cakir
Original Article


Objective: To verify whether tissue Doppler imaging (TDI) could contribute to a better understanding of the natural history of cardiomyopathy in active Cushing’s disease (CD), through its enhanced sensitivity to diastolic dysfunction, and identifying preliminary regional signs of systolic dysfunction before the appearance of clinical symptoms of cardiac pathologies. Methods: Eleven women with newly diagnosed CD and 32 control cases, purposely matched for gender, age, body mass index and co-incidental diseases were enrolled in this study. Echocardiographic examinations were assessed by conventional echocardiography and tissue Doppler imaging. The peak systolic velocity (S’m), early diastolic myocardial peak velocity (E’m), late diastolic myocardial peak velocity (A’m), isovolumic acceleration (IVA), myocardial pre-contraction time (PCT’m), myocardial contraction time (CT’m) and myocardial relaxation time (RT’m) were measured at septal and lateral mitral anulus. Results: In TDI, E’m and, E’m/A’m ratio were significantly lower, and PCT’m/CT’m ratio was higher, S’m, A’m, peak early diastole/E’m ratio, PCT’m, and isovolumetric myocardial relaxation time values were similar at lateral and septal anulus in patients with CD than controls (p>0.05). Lateral and septal anulus IVA were significantly lower in patients with CD than the control group (p<0.05). Correlation analysis showed that IVA time at lateral anulus correlated positively with S’m at lateral anulus (r=0.58; p=0.002) and IVA time at septal anulus correlated positively with S’m at septal anulus (r=0.51; p=0.008). Conclusion: Our study confirms that patients with CD have impaired diastolic function. More importantly, we also demonstrated an impairment of myocardial systolic function in patients with CD by TDI. We recommend using TDI in addition to conventional echocardiography parameters for the cardiovascular risk assessment of patients with Cushing’ syndrome.


Cushing’s disease left ventricular function tissue doppler imaging 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aron DC, Findling JW, Tyrrell JB. Cushing’s disease. Endocrinol Metab Clin North Am 1987, 16: 705–30.PubMedGoogle Scholar
  2. 2.
    Grua JR, Nelson DH. ACTH-producing pituitary tumors. Endocrinol Metab Clin North Am 1991, 20: 319–62.PubMedGoogle Scholar
  3. 3.
    Young WF Jr, Scheithauer BW, Gharib H, Laws ER Jr, Carpenter PC. Cushing’s syndrome due to primary multinodular corticotroph hyperplasia. Mayo Clin Proc 1988, 63: 256–62.PubMedCrossRefGoogle Scholar
  4. 4.
    Colao A, Pivonello N, Spiezia S, et al. Persistence of increased cardiovascular risk in patients with Cushing’s disease after five years of successful cure. J Clin Endocrinol Metab 1999, 84: 2664–72.PubMedCrossRefGoogle Scholar
  5. 5.
    Fallo F, Budano S, Sonino N, Muiesan ML, Agabiti-Rosei E, Boscaro M. Left ventricular structural characteristics in Cushing’s syndrome. J Hum Hypertens 1994, 8: 509–13.PubMedGoogle Scholar
  6. 6.
    Boscaro M, Barzon L, Fallo F, Sonino N. Cushing’s syndrome. Lancet 2001, 357: 783–91.PubMedCrossRefGoogle Scholar
  7. 7.
    Muiesan ML, Lupia M, Salvetti M, et al. Left ventricular structural and functional characteristics in Cushing’s syndrome. J Am Coll Cardiol 2003, 41: 2275–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Sugihara N, Shimizu M, Kita Y, et al. Cardiac characteristics and postoperative courses in Cushing’s syndrome. Am J Cardiol 1992, 69: 1475–80.PubMedCrossRefGoogle Scholar
  9. 9.
    Lusiani L, Ronsisvalle G, Visona A, et al. Acromegalic cardiomyopathy. An echocardiographic study. J Endocrinol Invest 1988, 11: 159–64.Google Scholar
  10. 10.
    Trambaiolo P, Tonti G, Salustri A, Fedele F, Sutherland G. New insights into regional systolic and diastolic left ventricular function using tissue Doppler echocardiography: from qualitative analysis to a quantitative approach. J Am Soc Echocardiogr 2001, 14: 85–96.PubMedCrossRefGoogle Scholar
  11. 11.
    Gulati VK, Katz WE, Follansbee WP, Gorcsan J. Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricularfunction. Am J Cardiol 1996, 77: 979–84.PubMedCrossRefGoogle Scholar
  12. 12.
    Oki T, Tabata T, Mishiro Y, et al. Pulsed tissue Doppler imaging of left ventricular systolic and diastolic wall motion velocities to evaluate differences between long and short axes in healthy subjects. J Am Soc Echocardiogr 1999, 12: 308–13.PubMedCrossRefGoogle Scholar
  13. 13.
    Shan DJ, DeMaria A, Kisslo J, Weyman A. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation 1978, 58: 1072–83.CrossRefGoogle Scholar
  14. 14.
    Devereux RB, Reichek N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation 1977, 55: 612–8.Google Scholar
  15. 15.
    Plotz CM, Knowlton AI, Ragan C. The natural history of Cushing’s syndrome. Am J Med 1952, 13: 597–614.PubMedCrossRefGoogle Scholar
  16. 16.
    Arnaldi G, Mancini T, Polenta B, Boscaro M. Cardiovascular risk in Cushing’s syndrome. Pituitary 2004, 7: 253–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Soffer LJ, lannaccone A, Gabulooe JC. Cushing’s syndrome: a study of 50 patients. Am J Med 1961, 30: 129–39.CrossRefGoogle Scholar
  18. 18.
    Pivonello R, Faggiano A, Lombardi G, Colao A. The metabolic syndrome and cardiovascular risk in Cushing’s syndrome. Endocrinol Metab Clin North Am 2005, 34: 327–39.PubMedCrossRefGoogle Scholar
  19. 19.
    Nishimura RA, Tajik AJ. Evalution of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol 1997, 30: 8–18.PubMedCrossRefGoogle Scholar
  20. 20.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relation and estimation of filling pressures. J Am Coll Cardiol 1997, 30: 1527–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Nagueh SF, Mikati I, Kopelen HA, et al. Doppler estimation of left ventricular filling pressure in sinus tachycardia: a new application of tissue Doppler imaging. Circulation 1998, 98: 1644–50.PubMedCrossRefGoogle Scholar
  22. 22.
    Rivas-Gotz C, Manolios M, Thohan V, Nagueh SF. Impact of left ventricular ejection fraction on estimation of left ventricular filling pressure using tissue Doppler and flow propagation velocity. Am J Cardiol 2003, 91: 780–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Ommen SR, Nishimura RA, Appleton CP, et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left venticular filling pressures: a comparative simultaneous Doppler catheterization study. Circulation 2000, 102: 1788–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Vogel M, Cheung MM, Li J, et al. Noninvasive assessment of left ventricular force frequency relationship using tissue Doppler-derived isovolumetric acceleration: validation in an animal study. Circulation 2003, 107: 1647–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Andersen NH, Terkelsen CS, Sloth E, Poulsen SH. Influence of preload alterations on parameters of systolic left ventricular longaxis function: a Doppler tissue study. J Am Soc Echocardiogr 2004, 17: 941–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Dalsgaard M, Snyder EM, Kjaergaard J, Johnson BD, Hassager C, Oh JK. Isovolumetric acceleration measured by tissue Doppler echocardiography is preload independent in healthy subjects. Echocardiography 2007, 24: 572–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Bonow RO, Udelson JE. Left ventricular diastolic dysfunction as a cause of congestive heart failure. Mechanism and management. Ann Intern Med 1992, 117: 502–10.CrossRefGoogle Scholar
  28. 28.
    Petrie MC, Caruana L, Berry C, McMurray JJ. “Diastolic heart failure” or heart failure caused by subtle left ventricular systolic dysfunction. Heart 2002, 87: 29–31.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2009

Authors and Affiliations

  • N. A. Bayram
    • 1
  • R. Ersoy
    • 2
  • C. Aydin
    • 2
  • K. Gul
    • 2
  • T. Keles
    • 1
  • O. Topaloglu
    • 2
  • T. Durmaz
    • 1
  • E. Bozkurt
    • 2
  • B. Cakir
    • 1
  1. 1.Department of CardiologyAnkara Ataturk Education and Research HospitalBilkentTurkey
  2. 2.Department of Endocrinology and MetabolismAnkara Ataturk Education and Research HospitalBilkent, SubayevleriTurkey

Personalised recommendations