Journal of Endocrinological Investigation

, Volume 15, Issue 9, pp 671–675

Hyperthermia in sauna is unable to increase the plasma levels of ACTH/Cortisol, ß-endorphin and prolactin in cocaine addicts

  • P. P. Vescovi
  • V. Coiro
  • R. Volpi
  • A. Giannini
  • M. Passeri
Article

Abstract

In order to establish possible different reactions between normal subjects and cocaine addicts to short term exposure to heat, thermal, cardiovascular and pituitary hormonal responses to hyperthermia in sauna were measured in 8 male cocaine addicts (studied after 14 days of abstinence) and in 8 age and weight matched normal men. Subjects sat for 30 min in a sauna room, where the temperature was 90 C and the relative humidity 10%. Physiological and hormonal parameters were measured just before and after sauna and after 30 min of rest at normal (21 C) room temperature. Significant and comparable increments in systolic and diastolic blood pressure, pulse rate and sublingual temperature were observed in the two groups at the end of sauna. All these parameters decreased to normal values after 30 min of rest at normal room temperature. Before sauna, ACTH, cortisol and β-endorphin levels were similar in the two groups, whereas plasma prolactin concentrations were significantly higher in cocaine addicts. All examined hormones rose significantly in the normal controls at the end of sauna. All hormones, except cortisol, returned to the basal levels after 30 min at normal room temperature. In contrast, no significant hormonal responses to hyperthermia were observed at any time point in cocaine addicts. These data do not provide evidence of alterations in the cardiovascular and thermal adaptive responses to hyperthermia in cocaine abusers. On the other hand, the results show an impairment of the ACTH/cortisol, β-endorphin and prolactin responses to hyperthermia in cocaine addicts. It is hypothesized that cocaine abuse produces alterations in the neuroendocrine control of pituitary function persisting after a relatively short drug free period.

Key-words

β-EP ACTH/cortisol prolactin hyperthermia cocaine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vescovi P.P., Gerra G., Pioli G., Pedrazzoni M., Maninetti L., Passeri M. Circulating opioid peptides during thermal stress. Horm. Metab. Res. 22:44, 1990.PubMedCrossRefGoogle Scholar
  2. 2.
    Vescovi P.P., Maninetti L., Gerra G., Pedrazzoni M., Pioli G., Girasole G., Passeri M. Effect of sauna- induced hyperthermia on pituitary secretion of prolactin and gonadotropin hormones. Neuroendocrinol. Lett. 3:143, 1990.Google Scholar
  3. 3.
    Leppaluoto J., Huttunen P., Hirvonen J., Vaananen A., Tuominen M., Vuori J. Endocrine effects of repeated sauna bathing. Acta Physiol. Scand. 128:467, 1986.PubMedCrossRefGoogle Scholar
  4. 4.
    Figà-Talamanca L., Gualandi C. Hyperthermic syndromes and impairment of the dopaminergic system: a clinical study. Ital. J. Neurol. Sci. 10:49, 1989.PubMedCrossRefGoogle Scholar
  5. 5.
    Sanchez C. The effects of dopamine D1 and D2 receptor agonists on body temperature in male mice. Eur. J. Pharmacol. 171:201, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Vybiral S., Jansky L. The role of dopaminergic pathways in thermoregulation in the rabbit. Neuropharmacology 28:15, 1989.PubMedCrossRefGoogle Scholar
  7. 7.
    Loscher W., Whitte U., Fredow G., Ganter M., Bickhardt K. Pharmacodynamic effects of serotonin (5-HT) receptor ligands in pigs: stimulation of 5-HT2 receptors induces malignant hyperthermia. Naun. Schm. Arch. Pharmacol. 341:483, 1990.Google Scholar
  8. 8.
    Nash J.F. jr, Meltzer H.Y., Gudelsky J.A. Selective cross-tolerance to 5-HT1A and 5-HT2 receptor mediated temperature and corticosterone responses. Pharmacol. Biochem. Behav. 38:781, 1989.CrossRefGoogle Scholar
  9. 9.
    Schmidt C. J., Black C.K., Abbate G.M., Taylor V.L. Methylenedioxymetanphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors. Brain Res. 529:85, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Kisc S.J., Kleinert R., Minauf M., Gilbert J., Walter J.F., Slimovitch C., Maurer E., Rezvani Y., Myers R., Hornykiewicz O. Brain neurotransmitter changes in three patients who had a fatal hyperthermia syndrome. Am. J. Psychiatry 147:1358, 1990.Google Scholar
  11. 11.
    Kubarko A.I., Pereverzev V.A., Balakleevskii A.I., Gomolko N.N. Analysis of changes in serotonin, histamine and prostaglandin E2 levels in cerebrospinal fluid and body tissues during hyperthermia of various origins. Vopr. Med. Khim. 37:26, 1991.PubMedGoogle Scholar
  12. 12.
    Vescovi P.P., Pedrazzoni M., Maninetti L., Gerra G., Passeri M. Impaired prolactin response to hyperthermia in heroin addicts. Acta Endocrinol. (Copenh.) 123:619, 1990.Google Scholar
  13. 13.
    Vescovi P.P., Pedrazzoni M., Gerra G., Maninetti L., Passeri M. Impaired ACTH and β-endorphin response to sauna-induced hyperthermia in heroin addicts. Acta Endocrinol. (Copenh.) 121:484, 1989.Google Scholar
  14. 14.
    Vescovi P.P., Michelini M., Maninetti L., Pedrazzoni M., Magnani G., Pezzarossa A., Passeri M. Secretion of beta- endorphin, ACTH and cortisol after hyperthermic stress in chronic alcoholics. Alcologia 3:267, 1991.Google Scholar
  15. 15.
    Roberts J.R., Quattrocchi E., Howland M.A. Severe hyperthermia secondary to intravenous drug abuse. Am. J. Emerg. Med. 2: 373, 1984.PubMedCrossRefGoogle Scholar
  16. 16.
    Dackis C.A., Gold M.S. New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurose Biobehav. Rev. 9:469, 1985.CrossRefGoogle Scholar
  17. 17.
    Memo M., Pradhan S., Hanbauer I. Cocaine-induced supersensitivity of striatal dopamine receptors: role of endogenous calmodulin. Neuropharmacology 20:1145, 1981.PubMedCrossRefGoogle Scholar
  18. 18.
    Schubert J., Fyro B., Nyback H., Sedvall G. Effects of cocaine and amphetamine on the metabolism of tryptophan and 5-hydroxytryptamine in mouse brain in vivo. Pharm. Rev. 37:860, 1970.Google Scholar
  19. 19.
    Friedman E., Gershon S., Rotrosen J. Effects of acute cocaine treatment on the turnover of 5-hydroxytryptamine in rat brain. Br. J. Pharmacol. 54:61, 1975.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Ho B.T., Taylor D.L., Estevez V.S., Englert L.F., Mc Kenna M.L. Behavioral effects of cocaine-metabolic and neurochemical approach. In: Elliswood E.H.jr, Kilbey M.M. (Eds.), Cocaine and other Stimulans. Plenum Press, New York, 1977, p. 229.CrossRefGoogle Scholar
  21. 21.
    Taylor D., Ho B.T. Neurochemical effects of cocaine following acute and repeated injecion. J. Neurosci. Res. 3:95, 1977.PubMedCrossRefGoogle Scholar
  22. 22.
    Former E.J., Estilow S. Cocaine influences beta-endorphin levels and release. Life Sci. 43:309, 1989.Google Scholar
  23. 23.
    Moldow R.L., Fischman A.J. Cocaine induced secretion of ACTH, beta- endorphin and corticosterone. Peptides 8:819, 1989.CrossRefGoogle Scholar
  24. 24.
    Mendelson J.H., Mello M.K., Tcoh S.K., Ellingboe J., Cochin J. Cocaine effects on pulsatile secretion of anterior pituitary, gonadal and adrenal hormones. J. Clin. Endocrinol. Metab. 69:1256, 1989.PubMedCrossRefGoogle Scholar
  25. 25.
    Cocores J.A., Dackis C.A., Gold M.S. Sexual dysfunction secondary to cocaine abuse in two patients. J. Clin. Psychiatry 47:384, 1986.PubMedGoogle Scholar
  26. 26.
    Gawin F.H., Kleber H.D. Neuroendocrine findings in chronic cocaine abusers: a preliminary report. Br. J. Psychiatry 247:1256, 1985.Google Scholar
  27. 27.
    Mendelson J.H., Teoh S.K., Lange U., Mello N.H., Weiss A., Skupy A.S.T. Hyperprolactinemia during cocaine withdrawal. In: Harris L.S. (Ed.), Problems of Drugs Dependance 1987. NIDA Res Monogr Ser 81 Washington DC: U.S. Government Printing Office, 1988, p.67.Google Scholar
  28. 28.
    Swartz C.M., Breen K., Leone F. Serum prolactin levels during extended cocaine abstinence. Am. J. Psychiatry 147:777, 1990.PubMedGoogle Scholar
  29. 29.
    Gawin F.H., Ellinwood E.H. Cocaine and other stimulants. N. Engl. J. Med. 318:1173, 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    Bloom A.S., Tseng L.F. Effects of beta-endorphin on body temperature ion mice at different ambient temperature. Peptides 2: 293, 1981.PubMedCrossRefGoogle Scholar
  31. 31.
    Clark W.G. Influence of opioids on central thermoregulatory mechanisms. Pharmacol. Biochem. Behav. 10:609, 1979.PubMedCrossRefGoogle Scholar
  32. 32.
    Clark W.S. Effects of opioid peptides on thermoregulation. Fed. Proc. 40:2754, 1981.PubMedGoogle Scholar
  33. 33.
    Wong T.M., Koo A., Li C.H. β-Endorphin: vasodilating effect on the microcirculatory system of hamster cheek pouch. Int. J. Peptide Res. 18:420, 1981.CrossRefGoogle Scholar
  34. 34.
    Holaday J.W., Wei E., Loh H.H., Li C.H. Endorphins may function in heat adaptation. Proc. Natl. Acad. Sci. USA 75:2923, 1978.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Stewart J., Eikelboom R. Stress masks the hypothermic effect of naloxone in rats. Life Sci. 25:1165, 1979.PubMedCrossRefGoogle Scholar
  36. 36.
    Rossier J., French E.D., Rivier C., Ling C., Guillemin R., Bloom F.E. Foot shock induced stress increase β-endorphin levels in blood but not in the brain. Nature 270: 618, 1977.PubMedCrossRefGoogle Scholar
  37. 37.
    Robins H.I., Kalin N.H., Shelton S.E., Martin P.A., Shecterle L.M., Barksdale C.M., Neville A.J., Marshall J. Rise in plasma beta-endorphin, ACTH and cortisol in cancer patients undergoing whole body hyperthermia. Horm. Metab. Res. 19:441, 1987.PubMedCrossRefGoogle Scholar
  38. 38.
    Tuomisto J., Mannisto P. Neurotransmitter regulation of anterior pituitary hormones. Pharm. Rev. 37:249, 1985.PubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1992

Authors and Affiliations

  • P. P. Vescovi
    • 1
  • V. Coiro
    • 1
  • R. Volpi
    • 1
  • A. Giannini
    • 2
  • M. Passeri
    • 1
  1. 1.Istituto di Clinica Medica Generate dell’Università di ParmaParmaItaly
  2. 2.Servizio di Medicina d’Urgenza USL4ParmaItaly

Personalised recommendations