Journal of Endocrinological Investigation

, Volume 31, Issue 2, pp 181–184 | Cite as

Bisphosphonates in the treatment of thalassemia-associated osteoporosis

  • A. Gaudio
  • N. Morabito
  • A. Xourafa
  • I. Macrì
  • A. Meo
  • S. Morgante
  • A. Trifiletti
  • A. Lasco
  • N. Frisina
Short Review

Abstract

Thalassemia major is a common cause of skeletal morbidity, as shown by the increased fracture risk in thalassemic patients. The etiology of this bone disease is multifactorial and culminates in a state of increased bone turnover with excessive bone resorption and remodeling. Despite hormonal replacement therapy, calcium and vitamin D administration, effective iron chelation, and normalization of hemoglobin levels, patients with thalassemia major continue to lose bone mass. The increased bone turnover rate observed in thalassemic patients justifies the use of powerful anti-resorption drugs, such as bisphosphonates. To date, alendronate, pamidronate, and zoledronate seem to be effective in increasing bone mineral density and normalizing bone turnover, but more trials are necessary to evaluate their efficacy in reducing fracture risks in larger thalassemic populations.

Key Words

Thalassemia osteoporosis bisphosphonates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruggiero L, De Sanctis V. Multicentre study on prevalence of fractures in transfusion-dependent thalassaemic patients. J Pediatr Endocrinol Metab 1998, 11: 773–8.PubMedGoogle Scholar
  2. 2.
    Vogiatzi MG, Macklin EA, Fung EB, et al. Prevalence of fractures among the Thalassemia syndromes in North America. Bone 2006, 38: 571–5.PubMedCrossRefGoogle Scholar
  3. 3.
    Lasco A, Morabito N, Gaudio A, Buemi M, Wasniewska M, Frisina N. Effects of hormonal replacement therapy on bone metabolism in young adults with beta-thalassemia major. Osteoporos Int 2001, 12: 570–5.PubMedCrossRefGoogle Scholar
  4. 4.
    Voskaridou E, Kyrtsonis MC, Terpos E, et al. Bone resorption is increased in young adults with thalassaemia major. Br J Haematol 2001, 112: 36–41.PubMedCrossRefGoogle Scholar
  5. 5.
    Jensen CE, Tuck SM, Agnew JE, et al. High incidence of osteoporosis in thalassaemia major. J Pediatr Endocrinol Metab 1998, 11 (Suppl 3): 975–7.PubMedGoogle Scholar
  6. 6.
    Wonke B, Jensen C, Hanslip JJ, et al. Genetic and acquired predisposing factors and treatment of osteoporosis in thalassaemia major. J Pediatr Endocrinol Metab 1998, 11 (Suppl 3): 795–801.PubMedGoogle Scholar
  7. 7.
    Lasco A, Morabito N, Gaudio A, et al. Osteoporosis and beta-thalassemia major: role of the IGF-I/IGFBP-III axis. J Endocrinol Invest 2002, 25: 338–44.PubMedCrossRefGoogle Scholar
  8. 8.
    Anapliotou ML, Kastanias IT, Psara P, Evangelou EA, Liparaki M, Dimitriou P. The contribution of hypogonadism to the development of osteoporosis in thalassaemia major: new therapeutic approaches. Clin Endocrinol (Oxf) 1995, 42: 279–87.CrossRefGoogle Scholar
  9. 9.
    Soliman AT, El Banna N, Abdel Fattah M, ElZalabani MM, Ansari BM. Bone mineral density in prepubertal children with beta-thalassemia: correlation with growth and hormonal data. Metabolism 1998, 47: 541–8.PubMedCrossRefGoogle Scholar
  10. 10.
    de Vernejoul MC, Pointillart A, Golenzer CC, et al. Effects of iron overload on bone remodeling in pigs. Am J Pathol 1984, 116: 377–84.PubMedCentralPubMedGoogle Scholar
  11. 11.
    De Sanctis V, Pinamonti A, Di Palma A, et al. Growth and development in thalassaemia major patients with severe bone lesions due to desferrioxamine. Eur J Pediatr 1996, 155: 368–72.PubMedCrossRefGoogle Scholar
  12. 12.
    Carmina E, Di Fede G, Napoli N, et al. Hypogonadism and hormone replacement therapy on bone mass of adult women with thalassemia major. Calcif Tissue Int 2004, 74: 68–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Suda T, Nakamura I, Jimi E, Takahashi N. Regulation of osteoclast function. J Bone Miner Res 1997, 12: 869–79.PubMedCrossRefGoogle Scholar
  14. 14.
    Fleisch H. Bisphosphonates: mechanisms of action. Endocr Rev 1998, 19: 80–100.PubMedCrossRefGoogle Scholar
  15. 15.
    Gatti D, Adami S. New Bisphosphonates in the Treatment of Bone Diseases. Drugs Aging 1999, 15: 285–96PubMedCrossRefGoogle Scholar
  16. 16.
    Morabito N, Lasco A, Gaudio A et al. Bisphosphonates in the treatment of thalassemia-induced osteoporosis. Osteoporos Int 2002, 13: 644–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Pennisi P, Pizzarelli G, Spina M, Riccobene S, Fiore CE. Quantitative ultrasound of bone and clodronate effects in thalassemia-induced osteoporosis. J Bone Miner Met 2003, 21: 402–8.CrossRefGoogle Scholar
  18. 18.
    Voskaridou E, Terpos E, Spina G et al. Pamidronate is an effective treatment for osteoporosis in patients with beta-thalassaemia. Br J Haematol 2003, 123: 730–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Perifanis V, Vyzantiadis T, Vakalopoulou S, et al. Treatment of beta-thalassaemia-associated osteoporosis with zoledronic acid. Br J Haematol 2004, 5: 91–2.CrossRefGoogle Scholar
  20. 20.
    Voskaridou E, Anagnostopoulos A, Konstantopoulos K, et al. Zoledronic acid for the treatment of osteoporosis in patients with beta-thalassemia: results from a single-center, randomized, placebo-controlled trial. Haematologica 2006, 91: 1193–202.PubMedGoogle Scholar
  21. 21.
    Otrock ZK, Azar ST, Shamseddeen WA, et al. Intravenous zoledronic acid treatment in thalassemia-induced osteoporosis: results of a phase II clinical trial. Ann Hematol 2006, 85: 605–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Gilfillan CP, Strauss BJ, Rodda CP, et al. A randomized, double-blind, placebo-controlled trial of intravenous zoledronic acid in the treatment of thalassemia-associated osteopenia. Calcif Tissue Int 2006, 79: 138–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Krueger CD, West PM, Sargent M, Lodolce AE, Pickard AS. Bisphosphonate-induced osteonecrosis of the jaw. Ann Pharmacother 2007, 41: 276–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Prentice A, Parsons TJ, Cole TJ. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 1994, 60: 837–42.PubMedGoogle Scholar
  25. 25.
    Compston JE. Bone density: BMC, BMD, or corrected BMD? Bone 1995, 16: 5–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Kröger H, Kotaniemi A, Vainio P, Alhava E. Bone densitometry of the spine and femur in children by dual-energy x-ray absorptiometry. Bone Miner 1992, 17: 75–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992, 7: 137–45.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2008

Authors and Affiliations

  • A. Gaudio
    • 1
  • N. Morabito
    • 1
  • A. Xourafa
    • 1
  • I. Macrì
    • 1
  • A. Meo
    • 2
  • S. Morgante
    • 1
  • A. Trifiletti
    • 1
  • A. Lasco
    • 1
  • N. Frisina
    • 1
  1. 1.Department of Internal Medicine, Pad. C 2° pianoPoliclinico UniversitarioMessinaItaly
  2. 2.Department of PediatricsUniversity PolyclinicMessinaItaly

Personalised recommendations