Advertisement

Journal of Endocrinological Investigation

, Volume 26, Issue 5, pp 429–434 | Cite as

Lesion of the amygdala on the right and left side suppresses testosterone secretion but only left-sided intervention decreases serum luteinizing hormone level

  • P. Banczerowski
  • Z. Csaba
  • V. Csernus
  • Ida Gerendai
Original Article

Abstract

The effect of right- and left-sided intra- amygdaloid injection of kainic acid on the hypothalamo- hypophyseal-testicular axis was studied in rats. Both right- and left-sided injection of the neurotoxin into the amygdala resulted in a significant decrease in basal testosterone secretion in vitro of both testes and in serum testosterone concentration. In addition, left-sided administration of kainic acid significantly suppressed serum luteinizing hormone level, while right-sided intervention did not alter this parameter. The results of the present study provide further evidence on the involvement of the amygdala in the control of testicular steroidogenesis. Furthermore, the observations suggest functional asymmetry of the amygdala concerning the mechanism of suppressed testosterone secretion.

Key-words

Amygdala laterality luteinizing hormone testosterone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Price J.R. The efferent connections of the amygdaloid complex in the rat, cat and monkey. In: Ben-Ari Y. (Ed.), The amygdaloid complex. Elsevier/North Holland, Amsterdam, 1981, p. 125.Google Scholar
  2. 2.
    Kaada B. Stimulation and regional ablation of the amygdaloid complex with reference to functional representation. In: Elefthesion B.E. (Ed.), The neurobiology of the amygdala. Plenum Press, New York, 1972, p. 205.CrossRefGoogle Scholar
  3. 3.
    Renaud L.P. Influence of amygdala stimulation on the activity of identified tuberoinfundibular neurones in the rat hypothalamus. J. Physiol. (London) 1976, 260: 237–252.PubMedCentralGoogle Scholar
  4. 4.
    Webber M.P., Hauser W.A., Ottman R., Annagers J.F. Fertility in persons with epilepsy. Epilepsia 1986, 27: 746–752.PubMedCrossRefGoogle Scholar
  5. 5.
    Herzog A.G., Seibel M.M., Schomer D.L., Vaitukaitis J.L., Geschwind N. Reproductive endocrine disorders in men with partial seizures of temporal lobe origin. Arch. Neurol. 1986, 43: 347–350.PubMedCrossRefGoogle Scholar
  6. 6.
    Edwards H.E., Burham W.M., MacLusky N.J. Partial and generalized seizures affect reproductive physiology differentially in the male rat. Epilepsia 1999, 40: 1490–1498.PubMedCrossRefGoogle Scholar
  7. 7.
    Ben-Ari Y., Tremblay E., Ottersen O.P. Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical and histological study in relation to the pathology of epilepsy. Neuroscience 1980, 5: 515–528.PubMedCrossRefGoogle Scholar
  8. 8.
    Nadler J.V. Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci. 1981, 29: 2031–2042.PubMedCrossRefGoogle Scholar
  9. 9.
    Ben-Ari Y. Limbic seizures and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985, 14: 375–403.PubMedCrossRefGoogle Scholar
  10. 10.
    Fisher R.S. Animal models of the epilepsies. Brain Res. Rev. 1989, 14: 245–278.PubMedCrossRefGoogle Scholar
  11. 11.
    Sperk G. Kainic seizures in the rat. Prog. Neurobiol. 1994, 42: 1–32.PubMedCrossRefGoogle Scholar
  12. 12.
    Ben-Ari Y., Lagowaska J., Tremblay E., Le Gal La Salle G. A new model of focal status epilepticus: intraamygdaloid application of kainic acid elicits repetitive secondary generalized convulsive seizures. Brain Res. 1979, 163: 176–179.PubMedCrossRefGoogle Scholar
  13. 13.
    Ben-Ari Y., Tremblay E., Ottersen O.P., Naquet R. Evidence suggesting secondary epileptic lesions after kainic acid: pretreatment with diazepam reduces distant but no focal brain damage. Brain Res. 1979, 165: 362–365.PubMedCrossRefGoogle Scholar
  14. 14.
    Tanaka S., Kondo S., Tanaka T., Yonemasu Y. Long-term observation of rats after unilateral intra-amygdaloid injection of kainic acid. Brain Res. 1988, 463: 163–167.PubMedCrossRefGoogle Scholar
  15. 15.
    Gerendai I., Halász B. Neuroendocrine asymmetry. Front. Neuroendocrinol. 1997, 18: 345–381.CrossRefGoogle Scholar
  16. 16.
    Gerendai I., Halász B. Asymmetry of the neuroendocrine system. News Physiol. Sci. 2001, 16: 92–95.PubMedGoogle Scholar
  17. 17.
    Galaburda A.M., Geschwind N., Kemper T., LeMay M. Right-left asymmetries of the brain. Science 1978, 199: 852–856.PubMedCrossRefGoogle Scholar
  18. 18.
    Amaducci L., Sorbi S., Albanses A., Gainotti G. Choline acetyltransferase (ChAT) activity differs in right and left human temporal lobes. Neurology 1981, 31: 799–805.PubMedCrossRefGoogle Scholar
  19. 19.
    Walsh K. Neuropsychology: A clinical approach. Churchill Livingstone, Edinburgh, 1978.Google Scholar
  20. 20.
    Paxinos G., Watson C. The rat brain in stereotaxic coordinates. Academic Press, San Diego, 1997.Google Scholar
  21. 21.
    Csernus V. Antibodies of high affinity and specificity for radioimmunological determination of progesterone, testosterone and estradiol-17β. In: Görög S. (Ed.), Advances in steroid analysis. Akadémiai Kiadó, Budapest, 1982, p. 171.Google Scholar
  22. 22.
    Yamada T., Greer M.A. The effect of bilateral ablation of the amygdala on endocrine function in the rat. Endocrinology 1960, 66: 565–574.PubMedCrossRefGoogle Scholar
  23. 23.
    Dreifuss J.J., Murphy J.T., Gloor P. Contrasting effects of two identified amygdaloid efferent pathways on single hypothalamic neurons. J. Neurophysiol. 1986, 31: 237–248.Google Scholar
  24. 24.
    Zolovick A.J. Effects of lesions and electrical stimulation of the amygdala on hypothalamo-hypophyseal regulation. In: Eleftheriou B.E. (Ed.), The neurobiology of the amygdala. Plenum Press, New York, 1972, p. 745.Google Scholar
  25. 25.
    Edwards H.E., MacLusky N.J., Burnham W.M. The effect of seizures and kindling on reproductive hormones in the rat. Neurosci. Biobehav. Rev. 2000, 24: 753–762.PubMedCrossRefGoogle Scholar
  26. 26.
    Card J.P., Enquist L.W. Use of pseudorabies virus for definition of synaptically linked neurons. Methods Mol. Genet. 1994, 4: 363–382.Google Scholar
  27. 27.
    Gerendai I., Tóth I.E., Boldogkoi Zs., Medveczky I., Halász B. CNS structures labeled from the testis using the transsynaptic tracing technique. J. Neuroendocrinol. 2000, 12: 1087–1095.PubMedCrossRefGoogle Scholar
  28. 28.
    Gerendai I., Csaba Zs., Vokó Z., Csernus V. Involvement of a direct neural mechanism in the control of gonadal functions. J. Steroid Molec. Biol. 1995, 53: 1–6.CrossRefGoogle Scholar
  29. 29.
    Gerendai I., Csaba Zs., Vokó Z., Csernus V. Effect of unilateral deafferentation in the medial basal portion of the temporal lobe on the hypophyseo-ovarian axis in rat: an age-dependent lateralized control mechanism. Brain Res. 1993, 619: 173–179.PubMedCrossRefGoogle Scholar
  30. 30.
    Sanchez M.A., Dominguez R. Differential effects of unilateral lesions in the medial amygdala on spontaneous and induced ovulation. Brain Res. Bull. 1995, 38: 313–317.PubMedCrossRefGoogle Scholar
  31. 31.
    Banczerowski P., Csaba Zs., Csernus V., Gerendai I. Lesion of the insular cortex affects luteinizing hormone and testosterone of rat. Lateralized effect. Brain Res. 2001, 906: 25–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Nance D.M., Moger W.H. Ipsilateral hypothalamic deafferentation blocks the increase in serum FSH following hemicastration. Brain Res. Bull. 1982, 8: 299–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Gerendai I., Csaba Zs., Csernus V. Lateralized effect of rightand left-sided vagotomy on testicular steroidogenesis and serum gonadotropin levels in hemicastrated peripubertal rats. Neuroendocrinol. Lett. 1995, 17: 193–198.Google Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2003

Authors and Affiliations

  • P. Banczerowski
    • 1
    • 2
  • Z. Csaba
    • 1
  • V. Csernus
    • 3
  • Ida Gerendai
    • 1
  1. 1.Neuroendocrine Research Laboratory, Department of Human Morphology and Developmental BiologySemmelweis UniversityBudapestHungary
  2. 2.National Institute of NeurosurgeryBudapestHungary
  3. 3.Department of Human AnatomyPécs UniversityPécsHungary

Personalised recommendations