Advertisement

Die Methode der Meta-Analyse zur Evidenzbasierung von Gesundheitsrisiken: Beiträge der Sozial-, Verhaltens- und Wirtschaftswissenschaften

  • Michael Bosnjak
  • Wolfgang Viechtbauer
Article
  • 88 Downloads

Zusammenfassung

Aus der Perspektive der arbeitsmedizinischen Praxis mag es nicht immer leicht fallen, die Qualität von meta- analytischen Befunden und deren schlüssig abzuleitenden Implikationen zu bewerten. Besonders evident wird diese Schwierigkeit, wenn sich quantitative Forschungssynthesen zu einem einheitlichen Untersuchungsthema in ihren Ergebnissen widersprechen. Ziel des Beitrages ist es deshalb, die vielfältigen Gestaltungsmöglichkeiten eines meta-analytischen Forschungsprozesses zu skizzieren und den kritischen Rezipienten gegenüber den klassischen „Achillesfersen“quantitativer Forschungssynthesen zu sensibilisieren. Dabei wird besonderes Gewicht auf eine interdisziplinäre Ausrichtung gelegt, indem auch vielversprechende Ansätze zur Lösung von meta- analytischen Teilproblemen aufgegriffen werden, die außerhalb der Medizin und Biostatistik entwickelt wurden.

Schlüsselwörter

Metaanalysen quantitative Forschungssynthesen Übersichtsbeitrag 

The meta-analytic method for establishing the evidence base of health risks: Contributions from the social, behavioral, and economic sciences

Abstract

Within the field of occupational medicine, it may at times not be easy from an applied perspective to judge the quality of meta- analytic findings and their corresponding implications. This difficulty becomes especially apparent when quantitative research syntheses regarding a common subject matter are contradictory in their findings. The goal of the present article is therefore to summarize the numerous design options that are part of the meta- analytic research process and to sensitize the critical reader to the typical vulnerabilities of quantitative research syntheses. In the process, an interdisciplinary orientation is given particular emphasis by considering potentially promising approaches to various issues that have been developed in disciplines outside medicine and biostatistics.

Key words

meta-analysis quantitative research synthesis review article 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barnes DE & Bero LA (1998). Why review articles on the health effects of passive smoking reach different conclusions. Journal of the American Medical Association, 279, 1566–1570PubMedCrossRefGoogle Scholar
  2. Begg CB & Mazumdar M (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50, 1088–1101PubMedCrossRefGoogle Scholar
  3. Berkey CS, Hoaglin DC, Antczak-Bouckoms A, Mosteller F & Colditz GA (1998). Meta-analysis of multiple outcomes by regression with random effects. Statistics in Medicine, 17, 2537–2550PubMedCrossRefGoogle Scholar
  4. Biggerstaff BJ, Tweedie RL & Mengersen KL (1994). Passive smoking in the workplace: Classical and Bayesian meta-analyses. International Archives of Occupational and Environmental Health, 66, 269–277PubMedCrossRefGoogle Scholar
  5. Booth A (2006). “Brimful of STARLITE”: Toward standards for reporting literature searches. Journal of the Medical Library Association, 94, 421–429PubMedCentralPubMedGoogle Scholar
  6. Bosnjak M, Barrett P & Haier S (2007). Congruence Metrics Generator [Web-based software]. Retrieved June 1, 2008, from http://www.psyconsult.de/bosnjak/pages/resources-and-tools/congruence-metric-generator.php
  7. Brüderl J (2004). Meta-Analyse in der Soziologie: Bilanz der deutschen Scheidungsursachenforschung oder „statistischer Fruchtsalat“? Zeitschrift für Soziologie, 33, 84–86Google Scholar
  8. Chalmers I, Hedges LV & Cooper H (2002). A brief history of research synthesis. Evaluation and the Health Professions, 25, 12–37PubMedCrossRefGoogle Scholar
  9. Chappell WR & Gratt LB (1996). A graphical method for pooling epidemiological studies. American Journal of Public Health, 86, 748–750PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cheung SF & Chan DK-S (2004). Dependent effect sizes in meta-analysis: Incorporating the degree of interdependence. Journal of Applied Psychology, 89, 780–791PubMedCrossRefGoogle Scholar
  11. Cochran WG (1954). The combination of estimates from different experiments. Biometrics, 10, 101–129CrossRefGoogle Scholar
  12. Cohen J (1992). A power primer. Psychological Bulletin, 112, 155–159PubMedCrossRefGoogle Scholar
  13. Cook TD & Campbell DT (1979). Quasi-experimentation: Design and analysis issues for field settings. Boston: Houghton Mifflin CompanyGoogle Scholar
  14. Cooper HM (1998). Synthesizing research: A guide for literature reviews (3rd ed.). Thousand Oaks, CA: SageGoogle Scholar
  15. Cooper H, Hedges LV & Valentine JC (2008). The handbook of research synthesis (2nd Ed.). New York, NY: Russell Sage FoundationGoogle Scholar
  16. Duval SJ & Tweedie RL (2000a). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 455–463PubMedCrossRefGoogle Scholar
  17. Duval SJ & Tweedie RL (2000b). A nonparametric „trim and fill“method of accounting for publication bias in meta-analysis. Journal of the American Statistical Association, 95, 89–98Google Scholar
  18. Egger M, Davey Smith G, Schneider M & Minder C (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315, 629–634PubMedCentralPubMedCrossRefGoogle Scholar
  19. Fahey T, Griffiths S & Peters TJ (1995). Evidence based purchasing: Understanding results of clinical trials and systematic reviews. British medical Journal, 311, 1056–1059PubMedCentralPubMedCrossRefGoogle Scholar
  20. Field AP (2005). Is the meta-analysis of correlation coefficients accurate when population correlations vary? Psychological Methods, 10, 444–467PubMedCrossRefGoogle Scholar
  21. Gigerenzer G (2002). Das Einmaleins der Skepsis: Über den richtigen Umgang mit Zahlen und Risiken. Berlin: Berlin VerlagGoogle Scholar
  22. Gigerenzer G & Edwards A (2003). Simple tools for understanding risks: From innumeracy to insight. British Medical Journal, 327, 741–744PubMedCentralPubMedCrossRefGoogle Scholar
  23. Glass GV (1977). Integrating findings: The meta-analysis of research. Review of Research in Education, 5, 351–379Google Scholar
  24. Glass GV, McGaw B & Smith ML (1981). Metaanalysis in social research. Beverly Hills, CA: SageGoogle Scholar
  25. Gleser LJ & Olkin I (1994). Stochastically dependent effect sizes. In Cooper HM & Hedges LV (Eds.), The handbook of research synthesis (pp. 339–355). New York: Russell SageGoogle Scholar
  26. Hayes AF & Krippendorff K (2007). Answering the call for a standard reliability measure for coding data. Communication Methods and Measures, 1, 77–89CrossRefGoogle Scholar
  27. Hedges LV (1992). Meta-analysis. Journal of Educational Statistics, 17, 279–296CrossRefGoogle Scholar
  28. Hedges LV & Olkin I (1985). Statistical methods for meta-analysis. San Diego, CA: Academic PressGoogle Scholar
  29. Hedges LV & Pigott TD (2001). The power of statistical tests in meta-analysis. Psychological Methods, 6, 203–217PubMedCrossRefGoogle Scholar
  30. Hedges LV & Pigott TD (2004). The power of statistical tests for moderators in meta-analysis. Psychological Methods, 9, 426–445PubMedCrossRefGoogle Scholar
  31. Hedges LV & Vevea JL (1998). Fixed and random-effects models in meta-analysis. Psychological Methods, 3, 486–504CrossRefGoogle Scholar
  32. Higgins JPT & Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Statistics in Medicine, 21, 1539–1558PubMedCrossRefGoogle Scholar
  33. Hoyt WT (2000). Rater bias in psychological research: When is it a problem and what can we do about it? Psychological Methods, 5, 64–86PubMedCrossRefGoogle Scholar
  34. Hunt M (1997). How science takes stock: The story of meta-analysis. New York: Russell SageGoogle Scholar
  35. Hunter JE & Schmidt FL (2004). Methods of meta-analysis: Correcting error and bias in research findings (2nd ed.). Thousand Oaks, CA: Sage PublicationsGoogle Scholar
  36. Hunter JE, Schmidt FL & Jackson GB (1982). Meta-analysis: Cumulating research findings across studies. Beverly Hills, CA: SageGoogle Scholar
  37. Kalaian HA & Raudenbush SW (1996). A multivariate mixed linear model for meta-analysis. Psychological Methods, 1, 227–235CrossRefGoogle Scholar
  38. Krippendorff K (2004). Content analysis: An introduction to its methodology. Thousand Oaks, CA: SageGoogle Scholar
  39. LeVois ME & Layard MW (1994). Inconsistency between workplace and spousal studies of environmental tobacco smoke and lung cancer. Regulatory Toxicolology and Pharmacology, 19, 309–316CrossRefGoogle Scholar
  40. Light RJ & Pillemer DB (1984). Summing up: The science of reviewing research. Cambridge, MA: Harvard University PressGoogle Scholar
  41. Lipsey MW (1994). Identifying potentially interesting variables and analysis opportunities. In Cooper HM & Hedges LV (Eds.), The Handbook of Research Synthesis (pp. 111–123). New York: Russell Sage FoundationGoogle Scholar
  42. Lipsey MW & Wilson DB (2001). Practical meta-analysis. Thousand Oaks, CA: SageGoogle Scholar
  43. MacCallum RC, Zhang S, Preacher KJ & Rucker DD (2002). On the practice of dichotomization of quantitative variables. Psychological Methods, 7, 19–40PubMedCrossRefGoogle Scholar
  44. May H (2004). Making statistics more meaningful for policy and research and program evaluation. American Journal of Program Evaluation, 25, 525–540Google Scholar
  45. McGettigan P, Sly K, O’Connell D, Hill S & Henry D (1999). The effects of information framing on the practices of physicians. Journal of General Internal Medicine, 14, 633–642PubMedCentralPubMedCrossRefGoogle Scholar
  46. Orwin RG (1983). A fail-safe N for effect size in meta-analysis. Journal of Educational Statistics, 8, 157–159CrossRefGoogle Scholar
  47. Orwin RG (1994). Evaluating coding decisions. In Cooper HM & Hedges LV (Eds.), The Handbook of Research Synthesis (pp. 139–162). New York: Russell Sage FoundationGoogle Scholar
  48. Pearson K (1904). Report on certain enteric fever inoculation statistics. British Medical Journal, 2, 1243–1246CrossRefGoogle Scholar
  49. Peterson RA & Brown SP (2005). On the use of beta coefficients in meta-analysis. Journal of Applied Psychology, 90, 175–181PubMedCrossRefGoogle Scholar
  50. Pigott TD (1994). Methods for handling missing data in research synthesis. In Cooper HM & Hedges LV (Eds.), The Handbook of Research Synthesis (pp. 163–175). New York: Russell Sage FoundationGoogle Scholar
  51. Robinson WS (1950). Ecological correlations and the behavior of individuals. American Sociological Review, 15, 351–357CrossRefGoogle Scholar
  52. Rosenberg M (2005). The file drawer-problem revisited: A general weighted method for calculating fail-safe numbers in meta-analysis. Evolution, 59, 464–468PubMedGoogle Scholar
  53. Rosenthal R (1979). The „file drawer problem“and tolerance for null results. Psychological Bulletin, 86, 638–641CrossRefGoogle Scholar
  54. Rosenthal R (1991). Meta-analytic procedures for social research. Newbury Park, CA: SageGoogle Scholar
  55. Rosenthal R & Rubin DR (1982). Comparing effect sizes of independent studies. Psychological Bulletin, 92, 500–504CrossRefGoogle Scholar
  56. Rothstein HR, Sutton AJ & Borenstein M (Eds.) (2005). Publication bias in meta-analysis: Prevention, assessment, and adjustments. Chichester, England: WileyGoogle Scholar
  57. Rustenbach SJ (2003). Metaanalyse: Eine anwendungsorientierte Einführung. Bern: Hans HuberGoogle Scholar
  58. Sánchez-Meca J & Marín-Martínez F (2008). Confidence intervals for the overall effect size in random-effects meta-analysis. Psychological Methods, 13, 31–48PubMedCrossRefGoogle Scholar
  59. Schmidt FL & Hunter JE (1977). Development of a general solution to the problem of validity generalization. Journal of Applied Psychology, 62, 529–540CrossRefGoogle Scholar
  60. Schulze R (2004). Meta-analysis: A comparison of approaches. Cambridge, MA: Hogrefe & HuberGoogle Scholar
  61. Schulze R (2007). Current methods for metaanalysis: Approaches, issues, and developments. Zeitschrift für Psychologie, 215, 90–103CrossRefGoogle Scholar
  62. Sidik K & Jonkman JN (2007). A comparison of heterogeneity variance estimators in combining results of studies. Statistics in Medicine, 26, 1964–1981PubMedCrossRefGoogle Scholar
  63. Sismondo S (2008). Pharmaceutical company funding and its consequences: A qualitative systematic review. Contemporary Clinical Trials, 29, 109–113PubMedCrossRefGoogle Scholar
  64. Shaddish WR & Haddock CK (1994). Combining estimates of effect size. In Cooper HM & Hedges LV (Eds.), The Handbook of Research Synthesis (pp. 261–281). New York: Russell Sage FoundationGoogle Scholar
  65. Stanley TD (2005). Beyond publication bias. Journal of Economic Surveys, 19, 309–345CrossRefGoogle Scholar
  66. Stanley TD (2008). Meta-regression methods for detecting and estimating empirical effects in the presence of publication selection. Oxford Bulletin of Economics and Statistics, 70, 103–127Google Scholar
  67. Stayner L, Bena J, Sasco AJ, Smith R, Steenland K, Kreuzer M & Straif K (2007). Lung cancer risk and workplace exposure to environmental tabacco smoke. American Journal of Public Health, 97, 545–551PubMedCentralPubMedCrossRefGoogle Scholar
  68. Steel PD & Kammeyer-Mueller JD (2002). Comparing meta-analytic moderator estimation techniques under realistic conditions. Journal of Applied Psychology, 87, 96–111PubMedCrossRefGoogle Scholar
  69. Stewart LA & Tierney JF (2002). To IPD or not to IPD? Advantages and disadvantages of systematic reviews using individual patient data. Evaluation and the Health Professions, 25, 76–97PubMedCrossRefGoogle Scholar
  70. Stouffer SA, Suchman EA, DeVinney LC, Star SA and Williams RM Jr. (1949). The American Soldier: Adjustment during Army Life (Vol. 1). Princeton, NJ: Princeton University PressGoogle Scholar
  71. Sutton AJ & Abrams KR (2001). Bayesian methods in meta-analysis and evidence synthesis. Statistical Methods in Medical Research, 10, 277–303PubMedCrossRefGoogle Scholar
  72. Sutton AJ & Higgins JPT (2008). Recent developments in meta-analysis. Statistics in Medicine, 27, 625–650PubMedCrossRefGoogle Scholar
  73. Thompson SG & Sharp SJ (1999). Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics in Medicine, 18, 2693–2708PubMedCrossRefGoogle Scholar
  74. Tobias A, Saez M & Kogevinas M (2004). Metaanalysis of results and individual patient data in epidemiologal studies. Journal of Modern Applied Statistical Methods, 3, 176–185Google Scholar
  75. Tritchler D (1999). Modelling study quality in meta-analysis. Statistics in Medicine, 18, 2135–2145PubMedCrossRefGoogle Scholar
  76. Viechtbauer W (2005). Bias and efficiency of meta-analytic variance estimators in the random-effects model. Journal of Educational and Behavioral Statistics, 30, 261–293CrossRefGoogle Scholar
  77. Viechtbauer W (2007a). Accounting for heterogeneity via random-effects models and moderator analyses in meta-analysis. Zeitschrift für Psychologie, 215, 104–121CrossRefGoogle Scholar
  78. Viechtbauer W (2007b). Hypothesis tests for population heterogeneity in meta-analysis. British Journal of Mathematical and Statistical Psychology, 60, 29–60PubMedCrossRefGoogle Scholar
  79. Wang MC & Bushman BJ (1998). Using the normal quantile plot to explore meta-analytic data sets. Psychological Methods, 3, 46–54CrossRefGoogle Scholar
  80. Wicherts JM, Borsboom D, Kats J & Molenaar D (2006). The poor availability of psychological research data for reanalysis. American Psychologist, 61, 726–728PubMedCrossRefGoogle Scholar
  81. Wittmann WW (1985). Evaluationsforschung: Aufgaben, Probleme und Anwendungen. Berlin: SpringerCrossRefGoogle Scholar
  82. Wittmann WW & Matt GE (1986). Meta-Analyse als Integration von Forschungsergebnissen am Beispiel deutschsprachiger Arbeiten zur Effektivität von Psychotherapie. Psychologische Rundschau, 37, 20–40Google Scholar
  83. Wortman PM (1994). Judging research quality. In Cooper H and Hedges LV (Eds.), Handbook of Research Synthesis. New York: Russell Sage FoundationGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  1. 1.Fakultät für WirtschaftswissenschaftenFreie Universität BozenBozen (BZ)Italien
  2. 2.Department of Methodology and StatisticsMaastricht UniversityMaastrichtNiederlande

Personalised recommendations