Journal of Endocrinological Investigation

, Volume 25, Issue 10, pp 876–883 | Cite as

Metabolic impact of body fat distribution

Short Review


Many studies have shown that fat distribution influences metabolism independently of the effects of total body fat stores. The accumulation of fat in the abdominal area, particularly in the visceral fat compartment, seems to be associated with an increased risk to display complications such as insulin resistance, diabetes, dyslipidemias and atherosclerosis. As reviewed in this paper, the mechanisms explaining this impact of fat distribution is not clearly established, although evidence suggests that free-fatty acids, leptin, TNF-α, PPAR-γ, and F are directly or indirectly involved in this process. Despite a lot of research has yet to be performed to mechanistically characterize the impact of visceral fat on the metabolic profile, there is enough consensus in the literature about its effect to justify its consideration in a clinical setting. In this regard, the use of waist circumference as a clinical marker of variations in visceral fat is highly relevant and should be encouraged. This review also presents an evolutionary perspective according to which body fat gain would have been and may still remain an adaptation that helps to deal with stress and inflammation.


Visceral obesity metabolic complications free fatty acids TNF-leptin PPAR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vague J. La différenciation sexuelle, facteur déterminant des formes de l’obésité. Presse Méd. 1947, 55: 339–340.PubMedGoogle Scholar
  2. 2.
    Lapidus L., Bengtsson C., Larsson B., Pennert K., Rybo E., Sjöström L. Distribution of adipose tissue and risk of cardiovascular disease and death: a 12 year follow-up of participants in the population study of women in Gothenburg, Sweden. B.M.J. 1984, 289: 1258–1261.CrossRefGoogle Scholar
  3. 3.
    Larsson B., Svärdsudd K., Welin L., Wilhelmsen L., Björntorp P., Tibblin G. Abdominal adipose tissue distribution, obesity and risk of cardiovascular disease and death: 13 year follow-up of participants in the study of men born in 1913. B.M.J. 1984, 288: 1401–1404.CrossRefGoogle Scholar
  4. 4.
    Ohlson L.O., Larsson B., Svärdsudd K. et al. The influence of body fat distribution on the incidence of diabetes mellitus — 13.5 years of follow-up of the participants in the study of men born in 1913. Diabetes 1985, 34: 1055–1058.PubMedCrossRefGoogle Scholar
  5. 5.
    Donahue R.P., Abbott R.D., Bloom E., Reed D.M., Yano K. Central obesity and coronary heart disease in men. Lancet 1987, 1: 821–824.PubMedCrossRefGoogle Scholar
  6. 6.
    Kissebah A.H. Central obesity: measurement and metabolic effects. Diabetes Rev. 1997, 5: 8–20.Google Scholar
  7. 7.
    Björntorp P. Metabolic implications of body fat distribution. Diabetes Care 1991, 14: 1132–1143.PubMedCrossRefGoogle Scholar
  8. 8.
    Fried S.K., Leibel R.L., Edens N.K., Kral J.G. Lipolysis in intraabdominal adipose tissues of obese women. Obes. Res. 1993, 1: 443–448.PubMedCrossRefGoogle Scholar
  9. 9.
    Mauriège P., Galitzky J., Berlan M., Lafontan M. Heterogeneous distribution of ß- and a2-adrenoceptor binding sites in human fat cells from various deposits: functional consequences. Eur. J. Clin. Invest. 1987, 17: 156–165.PubMedCrossRefGoogle Scholar
  10. 10.
    Mauriège P., Marette A., Atgié C. et al. Regional variation in adipose tissue metabolism of severely obese women. J. Lipid Res. 1995, 36: 672–684.PubMedGoogle Scholar
  11. 11.
    Hellmér J., Marcus C., Sonnenfeld T., Arner P. Mechanisms for differences in lipolysis between human subcutaneous and omental fat cells. J. Clin. Endocrinol. Metab. 1992, 75: 15–20.PubMedGoogle Scholar
  12. 12.
    Lönnqvist F., Krief S., Strosberg A.D., Nyberg B., Emorine L.J., Arner P. Evidence of a functional ß3-adrenoceptor in man. Br. J. Pharmacol. 1993, 110: 929–936.PubMedCrossRefGoogle Scholar
  13. 13.
    Vikman H.L., Savola J.M., Raasmaja A., Ohisalo J.J. α2A-adrenergic regulation of cyclic AMP accumulation and lipolysis in human omental and subcutaneous adipocytes. Int. J. Obes. 1996, 20: 185–189.Google Scholar
  14. 14.
    Hoffstedt J., Arner P., Hellers G., Lönnqvist F. Variation in adrenergic regulation of lipolysis between omental and subcutaneous adipocytes from obese and non-obese men. J. Lipid Res. 1997, 38: 795–804.PubMedGoogle Scholar
  15. 15.
    Arner P. Not all fat is alike. Lancet 1998, 351: 1301–1302.PubMedCrossRefGoogle Scholar
  16. 16.
    Björntorp P. “Portal“ adipose tissue as a generator of risk factors for cardiovascular disease and diabetes. Arteriosclerosis 1990, 10: 493–496.PubMedCrossRefGoogle Scholar
  17. 17.
    Björntorp P. Visceral obesity: a civilization syndrome. Obes. Res. 1993, 1: 206–222.PubMedCrossRefGoogle Scholar
  18. 18.
    Kissebah A.H., Krakower G.R. Regional adiposity and morbidity. Physiol. Rev. 1994, 74: 761–811.PubMedGoogle Scholar
  19. 19.
    Frayn K.N., Williams C.M., Arner P. Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases? Clin. Sci. (Lond.), 1996, 90: 243–253.Google Scholar
  20. 20.
    Boden G. Pathogenesis of type 2 diabetes. Insulin resistance. Endocrinol. Metab. Clin. North Am. 2001, 30: 801–815.PubMedCrossRefGoogle Scholar
  21. 21.
    Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedmann J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372: 425–432.PubMedCrossRefGoogle Scholar
  22. 22.
    Pelleymounter M.A., Cullen M.J., Baker M.B. et al. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995, 269: 540–543.PubMedCrossRefGoogle Scholar
  23. 23.
    Tartaglia L.A., Dembsky M., Wenig X. et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995, 83: 1263–1271.PubMedCrossRefGoogle Scholar
  24. 24.
    Couillard C., Mauriege P., Prud’homme D. et al. Plasma leptin concentrations: gender differences and associations with metabolic risk factors for cardiovascular disease. Diabetologia 1997, 40: 1178–1184.PubMedCrossRefGoogle Scholar
  25. 25.
    Hickey M.S., Israel R.G., Gardiner S.N. et al. Gender differences in serum leptin levels in humans. Biochem. Mol. Med. 1996, 59: 1–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Nagy T.R., Gower B.A., Trowbridge C.A., Dezenberg C., Shewchuk R.M., Goran M.I. Effects of gender, ethnicity, body composition, and fat distribution on serum leptin concentrations in children. J. Clin. Endocrinol. Metab. 1997, 82: 2148–2152.PubMedGoogle Scholar
  27. 27.
    Ronnemaa T., Karonen S.L., Rissanen A., Koskenvuo M., Koivisto V.A. Relation between plasma leptin levels and measures of body fat in identical twins discordant for obesity. Ann. Intern. Med. 1997, 126: 26–31.PubMedCrossRefGoogle Scholar
  28. 28.
    Lönnqvist F., Wennlund A., Arner P. Relationship between circulating leptin and peripheral fat distribution in obese subjects. Int. J. Obes. 1997, 21: 255–260.CrossRefGoogle Scholar
  29. 29.
    Minocci A., Savia G., Lucantoni R. et al. Leptin plasma concentrations are dependent on body fat distribution in obese patients. Int. J. Obes. 2000, 24: 1139–1144.CrossRefGoogle Scholar
  30. 30.
    Cnop M., Landchild M.J., Vidal J. et al. The concurrent accumulation of intra-abdominal and subcutaneous fat explains the association between insulin resistance and plasma leptin concentrations. Distinct metabolic effects of two fat compartments. Diabetes 2002, 51: 1005–1015.PubMedCrossRefGoogle Scholar
  31. 31.
    Shimabukuro M., Koyama K., Chen G. et al. Direct antidiabetic effect of leptin through triglyceride depletion of tissues. Proc. Natl. Acad. Sci. USA 1997, 94: 4637–4641.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Unger R.H., Zhou Y.T., Orci L. Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc. Natl. Acad. Sci. USA 1999, 96: 2327–2332.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Unger R.H., Orci L. Lipotoxic diseases of nonadipose tissues in obesity. Int. J. Obes. 2000, 24: S28–S32.CrossRefGoogle Scholar
  34. 34.
    Liuzzi A., Savia G., Tagliaferri M. et al. Serum leptin concentration in moderate and severe obesity: relationship with clinical, anthropometric and metabolic factors. Int. J. Obes. 1999, 23: 1066–1073.CrossRefGoogle Scholar
  35. 35.
    Holub M., Zwiauer K., Winkler C. et al. Relation of plasma leptin to lipoproteins in overweight children undergoing weight reduction. Int. J. Obes. 1999, 23: 60–66.CrossRefGoogle Scholar
  36. 36.
    Krempler F., Breban D., Oberkofler H. et al. Leptin, peroxisome proliferator-activated receptor-γ, and CCAAT/enhancer binding protein-α mRNA expression in adipose tissue of humans and their relation to cardiovascular risk factors. Arterioscler. Thromb. Vasc. Biol. 2000, 20: 443–449.PubMedCrossRefGoogle Scholar
  37. 37.
    Hotamisligil G.S., Shargill N.S., Spiegelmann B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993, 259: 87–91.PubMedCrossRefGoogle Scholar
  38. 38.
    Hotamisligil G.S., Budavari A., Murray D., Spiegelmann B.M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. J. Clin. Invest. 1994, 94: 1543–1549.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Hotamisligil G.S., Peraldi P., Budavari A., Ellis R., White M.F., Spiegelman B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity- induced insulin resistance. Science 1996, 271: 665–668.PubMedCrossRefGoogle Scholar
  40. 40.
    Hotamisligil G.S., Spiegelman B.M. Tumor necrosis factor a: a key component of the obesity-diabetes link. Diabetes 1994, 43: 1271–1278.PubMedCrossRefGoogle Scholar
  41. 41.
    Kern P.A., Saghizadeh M., Ong J.M., Bosch R.J., Deem R., Simsolo R.B. The expression of tumor necrosis factor in human adipose tissue. Regulation by obesity, weight loss, and relationship to lipoprotein lipase. J. Clin. Invest 1995, 95: 2111–2119.PubMedCentralPubMedCrossRefGoogle Scholar
  42. 42.
    Hotamisligil G.S., Arner P., Caro J.F., Atkinson R.L., Spiegelman B.M. Increased adipose tissue expression of tumor necrosis factor-a in human obesity and insulin resistance. J. Clin. Invest. 1995, 95: 2409–2415.PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Saghizadeh M., Ong J.M., Garvey W.T., Henry R.R., Kern P.A. The expression of TNF-a by human muscle. Relationship to insulin resistance. J. Clin. Invest. 1996, 97: 1111–1116.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Bertin E., Nguyen P., Guenounou M., Durlach V., Potron G., Leutenegger M. Plasma levels of tumor necrosis factor- alpha (TNF-alpha) are essentially dependent on visceral fat amount in type 2 diabetic patients. Diabetes Metab. 2000, 26: 178–182.PubMedGoogle Scholar
  45. 45.
    Hotamisligil G.S., The role of TNF alpha and TNF receptors in obesity and insulin resistance. J. Int. Med. 1999, 245: 621–625.CrossRefGoogle Scholar
  46. 46.
    Oefi F., Hurel S., Newkirk J., Sopwith M., Taylor R. Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM. Diabetes 1998, 47: 721–726.CrossRefGoogle Scholar
  47. 47.
    Pincelli A.I., Brunani A., Scacchi M. et al. The serum concentration of tumor necrosis factor alpha is not an index of growth-hormone- or obesity-induced insulin resistance. Horm. Res. 2001, 55: 57–64.PubMedCrossRefGoogle Scholar
  48. 48.
    Cseh K., Winkler G., Melczer Z., Baranyi E. The role of tumour necrosis factor (TNF)- a resistance in obesity and insulin resistance. Diabetologia 2000, 43: 525.PubMedCrossRefGoogle Scholar
  49. 49.
    Marin P., Andersson B., Ottosson M. et al. The morphology and metabolism of intraabdominal adipose tissue in men. Metabolism 1992, 41: 1242–1248.PubMedCrossRefGoogle Scholar
  50. 50.
    Bollinder J., Kager L., Ostman J., Arner P. Differences at the receptor and postreceptor levels between human omental and subcutaneous adipose tissue in the action of insulin on lipolysis. Diabetes 1983, 32: 117–123.CrossRefGoogle Scholar
  51. 51.
    Fernández-Real J.-M., Ricart W. Insulin resistance and inflammation in an evolutionary perspective: the contribution of cytokine genotype/phenotype to thriftiness. Diabetologia 1999, 42: 1367–1374.PubMedCrossRefGoogle Scholar
  52. 52.
    Kliewer S.A., Umesono K., Noonan D.J., Heyman R.A., Evans R.M. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptor. Nature 1992, 358: 771–774.PubMedCrossRefGoogle Scholar
  53. 53.
    Tontonoz P., Hu E., Graves R.A., Budavari A.I., Spiegelman B.M. MPPAR?2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 1994, 8: 1224–1234.PubMedCrossRefGoogle Scholar
  54. 54.
    Schoonjans K., Staels B., Auwerx J. The peroxisome proliferator activated receptors (PPARS) and their effect on lipid metabolism and adipocyte differentiation. Biochem. Biophys. Acta 1996, 1302: 93–109.PubMedCrossRefGoogle Scholar
  55. 55.
    Vidal-Puig A., Considine R.V., Jimenez-Linan M. et al. Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J. Clin. Invest. 1997, 99: 2416–2422.PubMedCentralPubMedCrossRefGoogle Scholar
  56. 56.
    Lefebvre A.M., Laville M., Vega N. et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998, 47: 98–103.PubMedCrossRefGoogle Scholar
  57. 57.
    Rieusset J., Andreelli F., Auboeuf D. et al. Insulin acutely regulates the expression of the peroxisome proliferatoractivated receptor-? in human adipocytes. Diabetes 1999, 48: 699–705.PubMedCrossRefGoogle Scholar
  58. 58.
    Klausner H., Heimberg M. Effect of adrenal-cortical hormones on release of triglycerides and glucose by liver. Am. J. Physiol. 1967, 212: 1236–1246.PubMedGoogle Scholar
  59. 59.
    Khani S., Tayek J.A. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin. Sci. (Lond.) 2001, 101: 739–747.CrossRefGoogle Scholar
  60. 60.
    Cigolini M., Smith U. Human adipose tissue in culture. VIII. Studies on the insulin-antagonistic effect of glucocorticoids. Metabolism 1979, 28: 502–510.PubMedCrossRefGoogle Scholar
  61. 61.
    Holmäng P., Björntorp P. The effects of cortisol on insulin sensitivity in muscle. Acta Physiol. Scand., 1992, 144: 425–431.PubMedCrossRefGoogle Scholar
  62. 62.
    Whitworth J.A., Mangos G.J., Kelly J.J. Cushing, cortisol, and cardiovascular disease. Hypertension 2000, 36: 912–916.PubMedCrossRefGoogle Scholar
  63. 63.
    Marin P., Darin M., Amemiya T., Andersson B., Jern S., Bjorntörp P. Cortisol secretion in relation to body fat distribution in obese premenopausal women. Metabolism 1992, 41: 882–886.PubMedCrossRefGoogle Scholar
  64. 64.
    Walker B.R., Soderberg S., Lindahl B., Olsson T. Independent effects of obesity and cortisol in predicting cardiovascular risk factors in men and women. J. Intern. Med. 2000, 247: 198–204.PubMedCrossRefGoogle Scholar
  65. 65.
    Lottenberg S.A., Giannella-Neto D., Derendorf H., et al. Effect of fat distribution on pharmacokinetics of cortisol in obesity. Int. J. Clin. Pharmacol. Ther. 1998, 36: 501–505.PubMedGoogle Scholar
  66. 66.
    Rebuffé-Scrive M., Lundholm K., Björntorp P. Glucocorticoid hormone binding to human adipose tissue. Eur. J. Clin. Invest. 1985, 15: 267–271.PubMedCrossRefGoogle Scholar
  67. 67.
    Bujalska I.J., Kumar S., Stewart P.M. Does central obesity reflect “Cushing’s disease of the omentum?”. Lancet 1997, 349: 1210–1213.PubMedCrossRefGoogle Scholar
  68. 68.
    Björntorp P., Rosmond R. The metabolic syndrome — a neuroendrocrine disorder? Br. J. Nutr. 2000, 83 (Suppl. 1): S49–S57.PubMedGoogle Scholar
  69. 69.
    Rosmond R., Dallman M.F., Björntorp P. Stress-related cortisol secretion in men: relationships with abdominal obesity and endocrine, metabolic and hemodynamic abnormalities. J. Clin. Endocrinol. Metab. 1998, 83: 1853–1859.PubMedGoogle Scholar
  70. 70.
    Rankinen T., Kim S.Y., Perusse L., Després J.P., Bouchard C. The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. Int. J. Obes. 1999, 23: 801–809.CrossRefGoogle Scholar
  71. 71.
    Després J.P., Prud’homme D., Pouliot M.C., Tremblay A., Bouchard A., Bouchard C. Estimation of deep abdominal adipose-tissue accumulation from simple anthroprometric measurement in men. Am. J. Clin. Nutr. 1991, 54: 471–477.PubMedGoogle Scholar
  72. 72.
    National Heart, Lung, and Blood Institute, Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults. The evidence report. Obes. Res. 1998, 6 (Suppl. 2): 515–209S.Google Scholar
  73. 73.
    Shor-Posner G., Campa A., Zhang G. et al. When obesity is desirable: a longitudinal study of the Miami HIV-1-infected drug abusers (MIDAS) cohort. J. Acquir. Immun. Defic. Syndr. 2000, 23: 81–88.CrossRefGoogle Scholar
  74. 74.
    Epel E.E., Moyer A.E., Martin C.D. et al. Stress-induced cortisol, mood, and fat distribution in men. Obes. Res. 1999, 7: 9–15.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2002

Authors and Affiliations

  1. 1.Division of Kinesiology, Faculty of MedicineLaval UniversitySte-FoyCanada

Personalised recommendations