Advertisement

Journal of Endocrinological Investigation

, Volume 24, Issue 4, pp 253–261 | Cite as

Type I 5′-iodothyronine deiodinase activity and mRNA are remarkably reduced in renal clear cell carcinoma

  • Janusz PachuckiEmail author
  • M. Ambroziak
  • Z. Tanski
  • J. Luczak
  • J. Nauman
  • A. Nauman
Original Article

Abstract

The purpose of this study was to compare thyroid hormone metabolism between non-cancerous tumor-surrounding human kidney tissues and renal clear cell carcinomas (RCCC). The material consisted of samples taken from 10 RCCC patients of both sexes and three grades of differentiation, G1 to G3. We showed that, similar to rat tissue, type I 5′ monodeiodinase (5′DI) expression is heterogeneous within the human kidney. We also found a poor correlation between 5′DI activity and mRNA level in noncancerous tumor-surrounding tissue suggesting significant post-transcriptional regulation of 5′DI expression by an unidentified process in the human kidney. In all RCCC tissues both 5′DI activity and mRNA levels were undetectable. This suggests either loss of human 5′DI gene expression during neoplastic transformation or the origination of RCCC from a tubular cell type that does not express 5′DI.

Key-words

Iodothyronine deiodinase renal clear cell cancer kidney neoplasm thyroid hormone transcription 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Silva J. E. Thyroid hormone control of thermogenesis and energy balance. Thyroid 1995, 5: 481–492.PubMedCrossRefGoogle Scholar
  2. 2.
    Legrand J. Thyroid hormone effects on growth and development. In: G. Hennemann (Ed.), Thyroid hormone metabolism. Marcel Dekker Inc., New York, 1986, p. 503.Google Scholar
  3. 3.
    Dubuis I.M., Glorieux J., Richer F., Deal C.L., Dussault J.H., Van Vliet G. Outcome of severe congenital hypothyroidism: closing the developmental gap with early high dose levothyroxine treatment. J. Clin. Endocrinol. Metab. 1996, 81: 222–227.PubMedGoogle Scholar
  4. 4.
    Chatterjee V.K.K., Tata J.R. Thyroid hormone receptors and their role in development. Cancer Surv. 1992, 14: 147–167.PubMedGoogle Scholar
  5. 5.
    St. Germain D.L. Development effects of thyroid hormone: the role of deiodinases in regulatory control. Biochem. Soc. Trans. 1999, 27: 83–88.PubMedGoogle Scholar
  6. 6.
    Mellemgaard A., From G., Jorgensen T., Johansen C., Olsen J. H., Perrild H. Cancer risk in individuals with benign thyroid disorders. Thyroid 1998, 8: 751–754.PubMedCrossRefGoogle Scholar
  7. 7.
    Borek C., Guernsey D.L., Ong A., Edelman I.S. Critical role played by thyroid hormone in induction of neoplastic transformation by chemical carcinogens in tissue culture. Proc. Natl. Acad. Sci. USA 1983, 80: 5749–5752.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Guernsey D.L., Borek C., Edelman I.S. Crucial role of thyroid hormone in x-ray-induced neoplastic transformation in cell culture. Proc. Natl. Acad. Sci. USA 1981, 78: 5708–5711.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Humes H.D., Cieslinski D.A., Johnson L.B., Sanchez I.O. Triiodothyronine enhances renal tubule cell replication by stimulating EGF receptor gene expression. Am. J. Physiol. Endocrinol. Metab. 1992, 262: F540–545.Google Scholar
  10. 10.
    St. Germain D.L., Galton V.A. The deiodinase family of selenoproteins. Thyroid 1997, 7: 655–668.PubMedCrossRefGoogle Scholar
  11. 11.
    St. Germain D.L. Iodothyronine deiodinases. Trends Endocrinol. Metab. 1994, 5: 36–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Kohrle J. Thyroid hormone deiodinases–a selenoenzyme family acting as gate keepers to thyroid hormone action. Acta Med. Austriaca 1996, 23: 17–30.PubMedGoogle Scholar
  13. 13.
    Moreno M., Berry M.J., Horst C., Thoma R., Goglia F., Harney J.W., Larsen P.R., Visser T.J. Activation and inactivation of thyroid hormone by type I iodothyronine deiodinase. FEBS Lett. 1994, 344: 143–146.PubMedCrossRefGoogle Scholar
  14. 14.
    Safran M., Leonard J.L. Comparison of the physicochemical properties of type I and type II iodothyronine 5′-deiodinase. J. Biol. Chem. 1991, 266: 3233–3238.PubMedGoogle Scholar
  15. 15.
    Nguyen T.T., Chapa F., DiStefano J.J. 3rd Direct measurement of the contributions of type I and type II 5′-deiodinases to whole body steady state 3,5,3′-triiodothyronine production from thyroxine in the rat. Endocrinology 1998, 139: 4626–4633.PubMedGoogle Scholar
  16. 16.
    Leonard J.L., Koehrle J. Intracellular pathways of iodothyronine metabolism. In: Braverman L.S., Utiger R.D. (Eds.), The thyroid. Lippincott-Raven, Philadelphia, New York, 1996, p. 125.Google Scholar
  17. 17.
    Yoshida K., Sakurada T., Kitaoka H., Fukazawa H., Kaise N., Kaise K., Yamamoto M., Suzuki M., Saito S., Yoshinaga K., Kimura S., Yamanaka M. Monodeiodination of thyroxine to 3,3′,5-triiodothyronine and 3,3′,5′-triiodothyronine in human kidney homogenate. Nippon Naibunpi Gakkai Zasshi 1982, 58: 199–209.PubMedGoogle Scholar
  18. 18.
    Boye N. Thyroxine monodeiodination in normal human kidney tissue in vitro. Acta Endocrinol. (Copenh.) 1986, 112: 536–540.Google Scholar
  19. 19.
    Mandel S.J., Berry M.J., Kieffer J.D., Harney J.W., Warne R.L., Larsen P.R. Cloning and in vitro expression of the human selenoprotein, type I iodothyronine deiodinase. J. Clin. Endocrinol. Metab. 1992, 75: 1133–1139.PubMedGoogle Scholar
  20. 20.
    Storkel S., van den Berg E. Morphological classification of renal cancer. World J. Urol. 1995, 13: 153–158.PubMedCrossRefGoogle Scholar
  21. 21.
    Nauman A., Nauman J., Witeska A., Dutkiewicz S. 5′-deiodinase type I in human kidney cancer. J. Endocrinol. Invest. 1993, 16: 76 (Abstract).Google Scholar
  22. 22.
    Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248–254.PubMedCrossRefGoogle Scholar
  23. 23.
    Leonard J.L., Rosenberg I.N. Iodothyronine 5′-deiodinase from rat kidney: substrate specificity and the 5′-deiodination of reverse triiodothyronine. Endocrinology 1980, 107: 1376–1383.PubMedCrossRefGoogle Scholar
  24. 24.
    Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162: 156–159.PubMedCrossRefGoogle Scholar
  25. 25.
    Sabatino L., Chopra I.J., Iervasi G., Ferrazzi P., Vanini V., Francesconi D. A Study of iodothyronine 5′-monodeiodinase activities in normal and pathological tissues in man and their comparison with activities in rat tissues. 72nd Annual Meeting of the American Thyroid Association, Palm Beach, Florida, 1999, 81 (Abstract).Google Scholar
  26. 26.
    Nishikawa M., Toyoda N., Yonemoto T., Ogawa Y., Tabata S., Sakaguchi N., Tokoro T., Gondou A., Yoshimura M., Yoshikawa N., Inada M. Quantitative measurements for type 1 deiodinase messenger ribonucleic acid in human peripheral blood mononuclear cells: mechanism of the preferential increase of T3 in hyperthyroid Graves’ disease. Biochem. Biophys. Res. Commun. 1998, 250: 642–646.PubMedCrossRefGoogle Scholar
  27. 27.
    Winzer R., Schmutzler C., Jakobs T.C., Ebert R., Rendl J., Reiners C., Jakob F., Kohrle J. Reverse transcriptase-polymerase chain reaction analysis of thyrocyte-relevant genes in fine-needle aspiration biopsies of the human thyroid. Thyroid 1998, 8: 981–987.PubMedCrossRefGoogle Scholar
  28. 28.
    Berry M.J., Banu L., Chen Y.Y., Mandel S.J., Kieffer J.D., Harney J.W., Larsen P.R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 1991, 353: 273–276.PubMedCrossRefGoogle Scholar
  29. 29.
    Oertel M., Gross M., Rokos H., Kohrle J. Selenium-dependent regulation of type I 5′-deiodinase expression. Am. J. Clin. Nutr. 1993, 57: 313S–314S.PubMedGoogle Scholar
  30. 30.
    Kohrle J. Thyroid hormone deiodination in target tissues — a regulatory role for the trace element selenium? Exp. Clin. Endocrinol. 1994, 102: 63–89.PubMedCrossRefGoogle Scholar
  31. 31.
    Linehan W.M., Lerman M.I., Zbar B. Identification of the von Hippel-Lindau (VHL) gene. Its role in renal cancer. JAMA 1995, 273: 564–570.PubMedCrossRefGoogle Scholar
  32. 32.
    Kohrle J., Rasmussen U.B., Ekenbarger D.M., Alex S., Rokos H., Hesch R.D., Leonard J.L. Affinity labeling of rat liver and kidney type I 5′-deiodinase. Identification of the 27-kDa substrate binding subunit. J. Biol. Chem. 1990, 265: 6155–6163.PubMedGoogle Scholar
  33. 33.
    Toyoda N., Zavacki A.M., Maia A.L., Harney J.W., Larsen P.R. A novel retinoid X receptor-independent thyroid hormone response element is present in the human type 1 deiodinase gene. Mol. Cell. Biol. 1995, 15: 5100–5112.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Zhang C.Y., Kim S., Harney J.W., Larsen P.R. Further characterization of thyroid hormone response elements in the human type 1 iodothyronine deiodinase gene. Endocrinology 1998, 139: 1156–1163.PubMedGoogle Scholar
  35. 35.
    Jakobs T.C., Schmutzler C., Meissner J., Kohrle J. The promoter of the human type I 5′-deiodinase gene — mapping of the transcription start site and identification of a DR+4 thyroid-hormone-responsive element. Eur. J. Biochem. 1997, 247: 288–297.PubMedCrossRefGoogle Scholar
  36. 36.
    Puzianowska-Kuznicka M., Nauman A., Madej A., Tanski Z., Cheng S., Nauman J. Expression of thyroid hormone receptors is disturbed in human renal clear cell carcinoma. Cancer Lett. 2000, 155: 145–152.PubMedCrossRefGoogle Scholar
  37. 37.
    Nauman A., Puzianowska-Kuznicka M., Tanski Z., Ouczak J., Cheng S.-Y., Nauman J. Expression and function of thyroid hormone receptor (TR) in human clear cell kidney cancer. 1st Annual Meeting of the American Thyroid Association, Portland, Oregon, 1998, 95 (Abstract).Google Scholar
  38. 38.
    Latchman D.S. Transcription-factor mutations and disease. N. Engl. J. Med. 1996, 334: 28–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Latif F., Tory K., Gnarra J., Yao M., Duh F.M., Orcutt M.L., Stackhouse T., Kuzmin I., Modi W., Geil L., et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 1993, 260: 1317–1320.PubMedCrossRefGoogle Scholar
  40. 40.
    Cohen H. T., Zhou M., Welsh A.M., Zarghamee S., Scholz H., Mukhopadhyay D., Kishida T., Zbar B., Knebelmann B., Sukhatme V.P. An important von Hippel-Lindau tumor suppressor domain mediates Sp1- binding and self-association. Biochem. Biophys. Res. Commun. 1999, 266: 43–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Davies P.H., Sheppard M.C., Franklyn J.A. Regulation of type I 5′-deiodinase by thyroid hormone and dexamethasone in rat liver and kidney cells. Thyroid 1996, 6: 221–228.PubMedGoogle Scholar
  42. 42.
    Kohrle J. Thyrotropin (TSH) action on thyroid hormone deiodination and secretion: one aspect of thyrotropin regulation of thyroid cell biology. Horm. Metab. Res. Suppl. 1990, 23: 18–28.PubMedGoogle Scholar
  43. 43.
    Schreck R., Schnieders F., Schmutzler C., Kohrle J. Retinoids stimulate type I iodothyronine 5′-deiodinase activity in human follicular thyroid carcinoma cell lines. J. Clin. Endocrinol. Metab. 1994, 79: 791–798.PubMedGoogle Scholar
  44. 44.
    Davies P.H., Sheppard M.C., Franklyn J.A. Inflammatory cytokines and type I 5′-deiodinase expression in phi1 rat liver cells. Mol. Cell. Endocrinol. 1997, 129: 191–198.PubMedCrossRefGoogle Scholar
  45. 45.
    Hashimoto H., Igarashi N., Miyawaki T., Sato T. Effects of tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6 on type I iodothyronine 5′- deiodination in rat thyroid cell line, FRTL-5. J. Interferon. Cytokine Res. 1995, 15: 367–375.PubMedCrossRefGoogle Scholar
  46. 46.
    Pekary A.E., Chopra I.J., Berg L., Hershman J.M. Sphingomyelinase and phospholipase A2 regulate type I deiodinase expression in FRTL-5 cells. Thyroid 1997, 7: 647–654.PubMedCrossRefGoogle Scholar
  47. 47.
    Leonard J.L., Ekenbarger D.M., Frank S.J., Farwell A.P., Koehrle J. Localization of type I iodothyronine 5′-deiodinase to the basolateral plasma membrane in renal cortical epithelial cells. J. Biol. Chem. 1991, 266: 11262–11269.PubMedGoogle Scholar
  48. 48.
    Murayama N., Yoshida K., Torikai S., Sakurada T., Asano Y., Yoshinaga K. Localization of thyroxine 5′-monodeiodinase activity in the renal proximal tubules in rabbits and rats. Horm. Metab. Res. 1985, 17: 197–200.PubMedCrossRefGoogle Scholar
  49. 49.
    Yoshida K., Sakurada T., Kitaoka H., Fukazawa H., Kaise N., Kaise K., Yamamoto M., Saito S., Yoshinaga K. Monodeiodination of thyroxine to 3,5,3′-triiodothyronine and to 3,3′,5′-triiodothyronine in isolated dog renal cortical tubuli. Endocrinol. Jpn. 1983, 30: 211–217.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee W.S., Berry M.J., Hediger M.A., Larsen P.R. The type I iodothyronine 5′-deiodinase messenger ribonucleic acid is localized to the S3 segment of the rat kidney proximal tubule. Endocrinology 1993, 132: 2136–2140.PubMedGoogle Scholar
  51. 51.
    St.Germain D.L., Croteau W. Ligand-induced inactivation of Type I iodothyronine 5′-deiodinase: protection by propylthiouracil in vivo and reversibility in vitro. Endocrinology 1989, 125: 2735–2744.PubMedCrossRefGoogle Scholar
  52. 52.
    Goswami A., Rosenberg I.N. Regulation of iodothyronine 5′-deiodinases: effects of thiol blockers and altered substrate levels in vivo and in vitro. Endocrinology 1990, 126: 2597–2606.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2001

Authors and Affiliations

  • Janusz Pachucki
    • 1
    Email author
  • M. Ambroziak
    • 2
  • Z. Tanski
    • 3
  • J. Luczak
    • 2
  • J. Nauman
    • 1
    • 4
  • A. Nauman
    • 2
  1. 1.Department of Internal Medicine and EndocrinologyMedical University of WarsawWarsawPoland
  2. 2.Department of BiochemistryMedical Centre of Postgraduate EducationOstrolekaPoland
  3. 3.Department of UrologyRegional HospitalOstrolekaPoland
  4. 4.Department of Endocrinology, Medical Research CentrePolish Academy of ScienceWarsawPoland

Personalised recommendations