Advertisement

Journal of Endocrinological Investigation

, Volume 23, Issue 10, pp 652–658 | Cite as

RBMY genes and AZFb deletions

  • David J. ElliottEmail author
Article

Abstract

Microdeletions of the AZFb region of the human Y chromosome usually result in severe consequences for spermatogenesis. AZFb contains at least four kinds of genes/gene families. These include a number of RBMY genes, which are clustered in the AZFb deletion interval. They are amongst the oldest genes on the mammalian Y chromosome, and are related to the gene encoding hnRNPG (RBMX) on the X chromosome. A retroposon-derived version of these genes is found on chromosome 11 that might replace the function of these genes during meiosis, during which time the X and Y chromosomes are transcriptionally inactivated. Each of these genes encodes proteins with an RNA binding motif, and interacts with more ubiquitously expressed proteins involved in pre-mRNA splice site selection. These findings imply that important pre-mRNA processing pathways might be disrupted in the germ cells of AZFb men.

Key-words

Azoospermia factor infertility RNA binding proteins pre-mRNA splicing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McElreavey K., Krausz C. Male infertility and the Y chromosome. Am. J. Hum. Genet. 1999, 64: 928–933.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Lahn B.T., Page D.C. Functional coherence of the human Y chromosome. Science 1997, 278: 675–680.PubMedCrossRefGoogle Scholar
  3. 3.
    Girardi S.K., Mielnik A., Schlegel P.N. Submicroscopic deletions in the Y chromosome of infertile men. Hum. Reprod. 1997, 12: 1635–1641.PubMedCrossRefGoogle Scholar
  4. 4.
    Krausz C., Quintana Murci L., Barbaux S., Siffroi J. P., Rouba H., Delafontaine D., Souleyreau Therville N., Arvis G., Antoine J.M., Erdei E., Taar J.P., Tar A., Jeandidier E., Plessis G., Bourgeron T., Dadoune J.P., Fellous M., McElreavey K.A. High frequency of Y chromosome deletions in males with nonidiopathic infertility. J. Clin. Endocrinol. Metab. 1999, 84: 3606–3612.PubMedGoogle Scholar
  5. 5.
    Brandell R.A., Mielnik A., Liotta D., Ye Z., Veeck L.L., Palermo G.D., Schlegel P.N. AZFb deletions predict the absence of spermatozoa with testicular sperm extraction: Preliminary report of a prognostic genetic test. Hum. Reprod. 1998, 13: 2812–2815.PubMedCrossRefGoogle Scholar
  6. 6.
    Ma K., Inglis J.D., Sharkey A., Bickmore W.A., Hill R.E., Prosser E.J., Speed R.M., Thomson E.J., Jobling M., Taylor K., Wolfe J., Cooke H.J., Hargreave T.B., Chandley A.C. A Y-chromosome gene family with RNA-binding protein homology — Candidates for the azoospermia factor AZF controlling human spermatogenesis. Cell 1993, 75: 1287–1295.PubMedCrossRefGoogle Scholar
  7. 7.
    Kenan D.J., Query C.C., Keene J.D. RNA recognition — Towards identifying determinants of specificity. Trends Biochem. Sci.1991, 16: 214–220.PubMedCrossRefGoogle Scholar
  8. 8.
    Chai N.N., Salido E.C., Yen P.H. Multiple functional copies of the RBM gene family, a spermatogenesis candidate on the human Y chromosome. Genomics 1997, 45: 355–361.PubMedCrossRefGoogle Scholar
  9. 9.
    Chandley A.C., Cooke H.J. Human male-fertility — Y-linked genes and spermatogenesis. Hum. Mol. Genet. 1994, 3: 1449–1452.PubMedGoogle Scholar
  10. 10.
    Glaser B., Hierl T., Taylor K., Schiebel K., Zeitler S., Papadopoullos K., Rappold G., Schempp W. High-resolution fluorescence in situ hybridization of human Y-linked genes on released chromatin. Chromosome Res. 1997, 5: 23–30.PubMedCrossRefGoogle Scholar
  11. 11.
    Pasantes J.J., Rottger S., Schempp W. Part of the RBM gene cluster is located distally to the DAZ gene cluster in human Yq11.23. Chromosome Res. 1997, 5: 537–540.PubMedCrossRefGoogle Scholar
  12. 12.
    Prosser J., Inglis J.D., Condie A., Ma K., Kerr S., Thakrar R., Taylor K., Cameron J.M., Cooke H.J. Degeneracy in human multicopy RBM (YRRM), a candidate spermatogenesis gene. Mamm. Genome 1996, 7: 835–842.PubMedCrossRefGoogle Scholar
  13. 13.
    Chai N.N., Zhou H.Y., Hernandez J., Najmabadi H., Bhasin S., Yen P.H. Structure and organization of the RBMY genes on the human Y chromosome: Transposition and amplification of an ancestral autosomal HnRNPG. Genomics 1998, 49: 283–289.PubMedCrossRefGoogle Scholar
  14. 14.
    Vogt P.H., Edelmann A., Kirsch S., Henegariu O., Hirschmann P., Kiesewetter F., Kohn F.M., Schill W.B., Farah S., Ramos C., Hartmann M., Hartschuh W., Meschede D., Behre H.M., Castel A., Nieschlag E., Weidner W., Grone H.J., Jung A., Engel W., Haidl G. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum. Mol. Genet. 1996, 5: 933–943.PubMedCrossRefGoogle Scholar
  15. 15.
    Elliott D.J., Millar M.R., Oghene K., Ross A., Kiesewetter F., Pryor J., McIntyre M., Hargreave T.B., Saunders P.T.K., Vogt P.H., Chandley A.C., Cooke H. Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm. Proc. Natl. Acad. Sci. USA 1997, 94: 3848–3853.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Yen P.H. A long-range restriction map of deletion interval 6 of the human Y chromosome: A region frequently deleted in azoospermic males. Genomics 1998, 54: 5–12.PubMedCrossRefGoogle Scholar
  17. 17.
    Graves J.A.M. The origin and function of the mammalian Y-chromosome and Y-borne genes — an evolving understanding. Bioessays 1995, 17: 311–320.PubMedCrossRefGoogle Scholar
  18. 18.
    Delbridge M.L., Harry J.L., Toder R., ONeill R.J.W., Ma K., Chandley A.C., Graves J.A.M. A human candidate spermatogenesis gene, RBM1, is conserved and amplified on the marsupial Y chromosome. Nat. Genet. 1997, 15: 131–136.PubMedCrossRefGoogle Scholar
  19. 19.
    Elliott D.J., Ma K., Kerr S.M., Thakrar R., Speed R., Chandley A.C., Cooke, H. An RBM homologue maps to the mouse Y chromosome and is expressed in germ cells. Hum. Mol. Genet. 1996, 5: 869–874.PubMedCrossRefGoogle Scholar
  20. 20.
    Mahadevaiah S.K., Odorisio T., Elliott D.J., Rattigan A., Szot M., Laval S.H., Washburn L.L., McCarrey J.R., Cattanach B.M., Lovell Badge R., Burgoyne P.S. Mouse homologues of the human AZF candidate gene RBM are expressed in spermatogonia and spermatids, and map to a Y chromosome deletion interval associated with a high incidence of sperm abnormalities. Hum. Mol. Genet. 1998, 7: 715–727.PubMedCrossRefGoogle Scholar
  21. 21.
    Burgoyne P.S. Male sterility — Fruit(less) flies provide a clue. Nature 1996, 381: 740–741.PubMedCrossRefGoogle Scholar
  22. 22.
    Delbridge M.L., Lingenfelter P.A., Disteche C.M., Graves J.A.M. The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nat. Genet. 1999, 22: 223–224.PubMedCrossRefGoogle Scholar
  23. 23.
    Mazeyrat S., Saut N., Mattei M.G., Mitchell M.J. RBMY evolved on the Y chromosome from a ubiquitously transcribed X-Y identical gene. Nat. Genet. 1999, 22: 224–226.PubMedCrossRefGoogle Scholar
  24. 24.
    Lahn B.T., Page D.C. Four evolutionary strata on the human X chromosome. Science 1999, 286: 964–967.PubMedCrossRefGoogle Scholar
  25. 25.
    Elliot D.J., Venables J.P., Newton C.S., Lawson D., Boyle S., Eperon I.C., Cooke H.S. An evolutionary conserved germ cell-specific hnRNp is encoded by a tetrotransposed gene. Hum. Mol. Genet. 2000, 9: 2117–2124.CrossRefGoogle Scholar
  26. 26.
    Kikyo N., Tada M., Tada T., Surani M.A. Mapping of the eukaryotic initiation factor EIF-1A gene, Eif1a, to mouse chromosome 12D-E by FISH. Mamm. Genome 1997, 8: 376.PubMedCrossRefGoogle Scholar
  27. 27.
    Venables J.P., Vernet C., Chew L., Elliott D.J., Cowmeadow R.B., Wu J., Cooke H.J., Artzt K., Eperon I.C. T-STAR/ETOILE: a novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis. Hum. Mol. Genet. 1999, 8: 959–969.PubMedCrossRefGoogle Scholar
  28. 28.
    Venables J.P., Elliott D.J., Makarova O.V., Makarov E.M., Cooke H.J., Eperon I.C. RBMY, a probable human spermatogenesis factor, and other HnRNP G proteins interact with Tra2 beta and affect splicing. Hum. Mol. Genet. 2000, 9: 685–694.PubMedCrossRefGoogle Scholar
  29. 29.
    Elliott D.J., Bourgeois C.F., Klink A., Stevenin J., Cooke H. A mammalian germ cell-specific RNA-binding protein interacts with ubiquitously expressed proteins involved in splice site selection. Proc. Natl. Acad. Sci. USA 2000, 97: 5717–5722.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Vernet C., Artzt K. STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 1997, 13: 479–484.PubMedCrossRefGoogle Scholar
  31. 31.
    Elliott D.J. Splicing and the single cell. Histol. Histopathol. 1999, 15: 239–249.Google Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2000

Authors and Affiliations

  1. 1.MRC Human Genetics UnitWestern General HospitalUK
  2. 2.Institute for Human GeneticsUniversity of Newcastle Upon TyneNewcastleUK

Personalised recommendations