Advertisement

Journal of Endocrinological Investigation

, Volume 23, Issue 6, pp 362–368 | Cite as

Serum androgen levels in adolescents with type 1 diabetes: Relationship to pubertal stage and metabolic control

  • K. Meyer
  • J. Deutscher
  • M. Anil
  • A. Berthold
  • M. Bartsch
  • Wieland Kiess
Original Article

Abstract

Delayed sexual maturation is still frequently seen in adolescents with type 1 diabetes. A close relationship between insulin and androgen metabolism has been found in a number of studies. Our study was designed to investigate whether or not abnormalities in androgen secretion could play a role in the onset of sexual maturation in adolescents with type 1 diabetes. We have asked whether or not there was a correlation between daily insulin dosage, duration of diabetes, metabolic control, age, pubertal stage, and body mass index (BMI) versus serum androgen concentrations. Basal total and free testosterone, dehydroepiandrosterone-sulfate (DHEA-S), dihydrotestosterone (DHT), sex hormone binding globulin (SHBG) and 3α-androstanediol glucuronide (3αdiol-G) plasma concentrations were measured in 36 pubertal boys and 31 pubertal girls with type 1 diabetes and in 59 sex- and pubertal stage-matched control subjects without diabetes. Significantly higher serum total testosterone (p<0.01) and free testosterone (p<0.05) levels were found in females and males with type 1 diabetes than in controls at pubertal stage 5. DHEA-S, SHBG, DHT and 3αdiol G concentrations in patients with diabetes were not significantly different from those in controls. There was no correlation between daily insulin requirements and serum androgen levels. These data suggest that adolescents with diabetes have similar serum levels of DHEA-S, SHBG, DHT and 3αdiol G as healthy subjects at all stages of puberty. However, there are significant differences in serum testosterone and free testosterone levels in adolescents with diabetes when compared to healthy, sex- and pubertal stage-matched controls in late puberty. We hypothesize that the increased testosterone levels in patients with diabetes could relate to reduced fertility in females, disorders of sexual maturation and an increased risk for cardiovascular complications later in life.

Key words

Diabetes type 1 androgens puberty testosterone sex hormone binding globuline 3α-androstanediol-glucuronide dehydroepiandrosterone-sulfate dihydrotestosterone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dunger D.B. Diabetes in puberty. Arch. Dis. Child 1992, 67: 569–570.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Amiel S.A., Sherwin R.S., Simonson D.C., Lauritano A.A., Tamborlane W.V. Impaired insulin action in puberty. A contributing factor to poor glycemic control in adolescents with diabetes. N. Engl. J. Med. 1986, 315: 215–219.PubMedCrossRefGoogle Scholar
  3. 3.
    Holly J.M.P., Dunger D.B., Al-Othman S.A., Wass J.A.H. Sex hormone binding globulin levels in adolescent subjects with diabetes mellitus. Diabet. Med. 1992, 9: 371–374.PubMedCrossRefGoogle Scholar
  4. 4.
    Rudberg S., Persson B. Indications of low sex hormone binding globulin (SHBG) in young females with type-1 diabetes, and an independent association to microalbuminuria. Diabet. Med. 1995, 12: 816–822.PubMedCrossRefGoogle Scholar
  5. 5.
    Djursing H., Hagen C., Nyboe A.A., Svenstrup B., Bennet P., Molsted P.L. Serum sex hormone concentrations in insulin dependent diabetic women with and without amenorrhoea. Clin. Endocrinol. (Oxf.) 1985, 23: 147–154.CrossRefGoogle Scholar
  6. 6.
    Horton R., Lobo R. Peripheral androgens and the role of androstanediol glucuronide. J. Clin. Endocrinol. Metab. 1986, 15: 293–306.CrossRefGoogle Scholar
  7. 7.
    Rittner H.L., Lee P.D.K., Blum W.F., Doerr H., Steiss J., Kreuder J., Rascher W., Kiess W. 3-α Androstanediol glucuronide serum levels throughout childhood and adolescence in relation to sex, age, and pubertal stage: Implications for the long-term care of children with congenital adrenal hyperplasia. J. Endocrinol. Invest. 1997, 20: 245–250.PubMedGoogle Scholar
  8. 8.
    Prader A., Largo A.H., Molinary L., Issler R.H. Physical growth in Swiss children from birth to 20 years of age. Helv. Paediatr. Acta 1989, 52: (Suppl.) 1.Google Scholar
  9. 9.
    Tanner J.M. Growth and adolescence, ed. 2. Oxford Blackwell Scientific, Oxford, 1962.Google Scholar
  10. 10.
    Kiess W., Past R., Meiler B., Kessler U., Strasser-Vogel B., Landgraf R. Immediate HbA1c measurements in the paediatric diabetes clinic: reliability, limitations and practical evaluation. Horm. Metab. Res. 1994, 26: 351–352.PubMedCrossRefGoogle Scholar
  11. 11.
    Small M., Gray L.E., Beastall G.H. Adrenal androgens in IDDM. Diabetes Res. 1989, 11: 93–95.PubMedGoogle Scholar
  12. 12.
    Rudberg S., Persson B. Indications of low sex hormone binding globulin (SHBG) in young females with type-1 diabetes, and an independent association to microalbuminuria. Diabetic Med. 1995, 12: 816–822.PubMedCrossRefGoogle Scholar
  13. 13.
    Evans D.J., Hoffman R.G., Kalkhoff R.K., Kissebah A. Relationship of androgenic activity to body fat topography, fat cell morphology, and metabolic abnormalities in premenopausal women. J. Clin. Endocrinol. Metab. 1983, 57: 304–310.PubMedCrossRefGoogle Scholar
  14. 14.
    Haffner S.M., Dunn J.F., Katz M.S. Relationship of sex hormone binding globulin to lipid, lipoprotein, glucose, and insulin concentrations in postmenopausal women. Metabolism 1992, 41: 278–284.PubMedCrossRefGoogle Scholar
  15. 15.
    Haffner S.M., Katz M.S., Stern M.P., Dunn J.F. The relationship of sex hormones to hyperinsulinemia and hyperglycemia. Metabolism 1988, 37: 683–688.PubMedCrossRefGoogle Scholar
  16. 16.
    Haffner S.M., Valdez R.A., Mykkänen L., Stern M.P., Katz M.S. Decreased testosterone and dehydroepiandrosterone sulfate concentrations are associated with increased insulin and glucose concentrations in nondiabetic men. Metabolism 1994, 43: 599–603.PubMedCrossRefGoogle Scholar
  17. 17.
    Beck-Nielsen H., Richelsen B., Hasling C., Nielsen O.H., Heding L., Sorensen N.S. Improved in vivo insulin effect during continuous subcutaneous insulin infusion in patients with IDDM. J. Clin. Endocrinol. Metab. 1984, 33: 721–732.Google Scholar
  18. 18.
    Plymate S.R., Jones R.E., Matej L.A., Friedl K.E. Regulation of sex hormone binding globulin (SHBG) production in Hep G2 cells by insulin. Steroids 1988, 52: 339–422.PubMedCrossRefGoogle Scholar
  19. 19.
    Vague V.L., Raccah D., Pugeat M., Bautrant D., Belicar P., Vague P. SHBG (Sex hormone binding globulin) levels in insulin dependent diabetic patients according to the route of insulin administration. Horm. Metab. Res. 1994, 26: 436–437.PubMedCrossRefGoogle Scholar
  20. 20.
    Poretsky L. On the paradox of insulin-induced hyperandrogenism in insulin-resistant states. Endocr. Rev. 1991, 12: 3–13.PubMedCrossRefGoogle Scholar
  21. 21.
    Barbieri R.L., Makris A., Randall R.V., Daniels G., Kistner R.V., Ryan K.J. Insulin stimulated androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. J. Clin. Endocrinol. Metab. 1986, 62: 904–926.PubMedCrossRefGoogle Scholar
  22. 22.
    Velhius K.D., Toaff M.E., Strauss J.F., Demers L.N. Mechanisms subserving the tropic action of insulin on ovarian cells: in vitro studies using swine granulosa cells. J. Clin. Invest. 1988, 72: 1046–1057.Google Scholar
  23. 23.
    Diamond M.P., Grainger D.A., Laudano A.J., Starick-Zych K., DeFronzo R.A. Effect of acute physiological elevations of insulin on circulating androgen levels in nonobese women. J. Clin. Endocrinol. Metab. 1991, 72: 883–887.PubMedCrossRefGoogle Scholar
  24. 24.
    Dunaif A., Graf M. Insulin administration alters gonadal steroid metabolism independent of changes in gonadotropin secretion in insulin-resistant women with polycystic ovary syndrome. J. Clin. Invest. 1989, 83: 23–29.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Stuart C.A., Prince M.J., Peters E.J., Mejer M.J. Hyperinsulinemia and hyperandrogenemia: in vivo androgen response to insulin infusion. Obstet. Gynecol. 1987, 69: 921–925.PubMedGoogle Scholar
  26. 26.
    Carlson M.G., Campbell P.J. Intensive insulin therapy and weight gain in IDDM. Diabetes 1993, 42: 1700–1707.PubMedCrossRefGoogle Scholar
  27. 27.
    Abusrewil S.S., Savage D.C.L. Obesity and diabetic control. Arch. Dis. Child 1989, 64: 1313–1315.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Zumoff B. Hormonal abnormalities in obesity. Acta Med. Scand. 1988, (Suppl.) 723: 153–156.Google Scholar
  29. 29.
    Virtanen S.M. Metabolic control and diet in Finnish diabetic adolescents. Acta Paediatr. 1992, 81: 239–243.PubMedCrossRefGoogle Scholar
  30. 30.
    Zachrisson I., Wallensteen M., Dahlquist G. Determinants of blood glucose variability in adolescents with insulin-dependent diabetes mellitus. Acta Paediatr. 1995, 84: 70–74.PubMedCrossRefGoogle Scholar
  31. 31.
    Deslypere J.P., Sayed A., Punjabi U., Verdonck L., Vermeulen A. Plasma 5 α-androstane-3α, 17β-diol and urinary 5α androstane-3α, 17β glucuronide, parameters of peripheral androgen action: a comparative study. J. Clin. Endocrinol. Metab. 1982, 54: 386–391.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2000

Authors and Affiliations

  • K. Meyer
    • 1
  • J. Deutscher
    • 1
  • M. Anil
    • 2
  • A. Berthold
    • 1
  • M. Bartsch
    • 1
  • Wieland Kiess
    • 1
  1. 1.Children’s HospitalUniversity of LeipzigLeipzigGermany
  2. 2.Children’s HospitalUniversity of GiessenLeipzigGermany

Personalised recommendations