Advertisement

Whey as a substrate for generation of bioelectricity in microbial fuel cell using E.coli

  • S. Nasirahmadi
  • A. A. Safekordi
Article

Abstract

While oil prices raise and the supply remains unsteady, it may be beneficial to use the high content of energy available in food processing wastes, such as cheese whey waste, by converting it to bioenergy. As well, there have been many new waste biotreatment technologies developed recently, which may well be used directly to food processing wastes. Microbial fuel cell represents a new technology for simultaneous use of waste materials and bioelectricity generation. In this study, bioelectricity generation with whey degradation was investigated in a two-chamber microbial fuel cell with mediators. E.coli was able to use the carbohydrate found in whey to generate bioelectricity. The open-circuit voltage in absence of mediator was 751.5mV at room temperature. The voltage was stable for more than 24 h. Riboflavin and humic acid were used as conceivable mediators. The results showed that humic acid was a few times more effective than Riboflavin. Additionally, four chemicals employed as catholyte. Based on polarization curve, FeCl3 (III) was the best. Maximum power generation and current were 324.8 μW and 1194.6μA, respectively.

Keywords

Bioelectricity Catholyte Cheese whey Mediator Microbial fuel cell 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. M.; Bennetto, H. P., (1993). Microbial Fuel-Cells: electricity production from carbohydrates. Appl. Biochem. Biotech., 39–40(1), 27–40 (14 pages).CrossRefGoogle Scholar
  2. Beveridge, T. J., (2004). Composition, reactivity, and regulation of extracellular metal-reducing structures (bacterial nanowires) produced by dissimilatory metal reducing bacteria. 01 June. University of Guelph, 1–3 (3 pages).Google Scholar
  3. Bond, D. R.; Lovley, D. R., (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microb., 69(3), 1548–1555 (8 pages).CrossRefGoogle Scholar
  4. Bond, D. R.; Holmes, D. E.; Tender, L. M.; Lovley, D. R., (2002). Electrode-reducing microorganisms that harvest energy from marine sediments. Sci., 295(5554), 483–485 (3 pages).CrossRefGoogle Scholar
  5. Chae, K. J.; Choi, M. J.; Lee, J. W.; Kim, K. Y.; kim, I. S., (2009). Effect of different substrates on the performance, bacterial diversity and bacterial viability in microbial fuel cells. Bioresour. Tech., 100(14), 3518–3525 (8 pages).CrossRefGoogle Scholar
  6. Chae, K. J.; Choi, M.; Ajayi, F. F.; Park, W.; Chang, I. S.; Kim, I. S., (2008). Mass transport through a proton exchange membrane (Nafion) in microbial fuel cell. Energy and Fuels., 22(1), 169–176 (8 pages).CrossRefGoogle Scholar
  7. Chaudhuri, S. K.; Lovley, D. R., (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotech., 21, 1229–1232 (4 pages).CrossRefGoogle Scholar
  8. Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).Google Scholar
  9. Gil, G. C.; Chang, I. S.; Kim, B. H.; Kim, M.; Jang, J. K.; Park, H. S.; Kim, H. J., (2003). Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosen. Bioelectro., 18(4), 327–338 (12 pages).CrossRefGoogle Scholar
  10. Goho, A., (2004 ). Special treatment: Fuel cell draws energy from waste. Science News Web. http://www.sciencenews.org/articles/20040313/fob5.asp.
  11. Hernandez, M. E.; Kappier, A.; Newman, D. K., (2004). Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol., 79(2), 921–928 (8 pages).CrossRefGoogle Scholar
  12. Jang, J. K.; Pham, T. H.; Chang, I. S.; Kang, K. H.; Moon, H.; Cho, K. S.; Kim, B. H., (2004). Construction and operation of a novel mediator and membrane-less microbial fuel cell. Process. Biochem., 39(8), 1007–1012 (6 pages).CrossRefGoogle Scholar
  13. Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H., (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians. Enz. Microb. Tech., 30(2), 145–152 (8 pages).CrossRefGoogle Scholar
  14. Kim, B. H.; Park, D. H.; Shin, P. K.; Chang, I. S.; Kim, H. J., (1999). Mediator-less biofuel cell. U.S. Patent., 5976719 (18 pages).Google Scholar
  15. Liu, H.; Ramnarayanan, R.; Logan, B. E., (2004). Production of electricity during waste-water treatment using a single chamber microbial fuel cell. Environ. Sci. Tech., 38(7), 2281–2285 (5 pages).CrossRefGoogle Scholar
  16. Logan, B. E., (2004). Extracting hydrogen and electricity from renewable resources. Environ. Sci. Tech., 38(9), 160A–167A (8 pages).CrossRefGoogle Scholar
  17. Logan, B. E., (2005). Simultaneous wastewater treatment and biological electricity generation. Water. Sci. Tech., 52(1–2), 31–37 (7 pages).Google Scholar
  18. Min, B.; Logan, B. E., (2004). Continuous electricity generation from domestic waste-water and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Tech., 38(21), 5809–5814 (6 pages).CrossRefGoogle Scholar
  19. Oh, S. E.; Min, B.; Logan, B. E., (2004). Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Tech., 38(18), 4900–4904 (5 pages).CrossRefGoogle Scholar
  20. Park, D. H.; Laivenieks, M.; Guettler, M. V.; Jain, M. K.; Zeikus, J. G., (1999). Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol., 65(7), 2912–2917 (6 pages).Google Scholar
  21. Park, D. H.; Zeikus, J. G., (1999). Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol., 181, 2403–2410 (8 pages).Google Scholar
  22. Perkins, S., (2002). Voltage from the bottom of the sea: Ooze-dwelling microbes can power electronics. Science News Web. http://www.sciencenews.org/articles/20020713/fob5.asp.
  23. Rabaey, K.; Boon, N.; Hofte, M.; Verstraete, W., (2005a). Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Tech., 39(9), 3401–3408 (8 pages).CrossRefGoogle Scholar
  24. Rabaey, K.; Verstraete, W., (2005b). Microbial fuel cells: novel biotechnology for energy generation. Trends. Biotech., 23, 291–298 (8 pages).CrossRefGoogle Scholar
  25. Rabaey, K.; Boon, N.; Siciliano, S. D.; Verhaege, M.; Verstraete, W., (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70(9), 5373–5382 (10 pages).CrossRefGoogle Scholar
  26. Reguera, G.; McCarthy, K. D.; Mehta, T.; Nicoll, J. S.; Tuominen, M. T.; Lovley, D. R., (2005). Extracellular electron transfer via microbial nanowires. Nature., 435, 1098–1101 (4 pages).CrossRefGoogle Scholar
  27. Suzuki, S.; Karube, I.; Matsunaga, T., (1978). Application of a biochemical fuel cell to wastewaters. Biotech. Bioeng. Sympo., 8, 501–511 (11 pages).Google Scholar
  28. Thomas, L. C.; Chamberlin, G. J., (1980). Colorimetric Chemical Analytical Methods, 9rd. Ed. The Tintometer Ltd, Salisbury. UK. (625 pages).Google Scholar
  29. Venkata Mohan, S.; Saravanan, R.; Veer Raghuvulu, S.; Mohanakrishna, G.; Sarma, P. N., (2008). Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: effect of catholyte. Bioresour. Tech., 99, 596–603 (8 pages).CrossRefGoogle Scholar
  30. Venkata Mohan, S.; Veer Raghuvulu, S.; Srikanth, S.; Sarma, P. N., (2007). Bioelectricity production by mediatorless microbial fuel cell under acidophilic condition using wastewater as substrate: influence of substrate loading rate. Curr. Sci., 92(12), 1720–1726 (7 pages).Google Scholar
  31. Voggu, L.; Schlag, S.; Biswas, R.; Rosenstein, R.; Rausch, C.; Gotz, F., (2006). Microevolution of cytochrome bd oxidase in Staphylococci and its implication in resistance to respiratory toxins release by Psuedomonas. J. Bacteriol., 188(23), 8079–8086 (8 pages).CrossRefGoogle Scholar
  32. Wingard, L. B. J.; Shaw, C H.; Castner, J. F., (1982) Bioelectrochemical fuel cells. Enz. Microb. Tech., 4(3), 137–142 (6 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.Department of Engineering, Science and Research BranchIslamic Azad UniversityTehranIran

Personalised recommendations