Dynamic behavior modeling of cigarette smoke particles inside the car cabin with different ventilation scenarios

  • E. M. Saber
  • M. Bazargan


Dynamic behavior of cigarette smoke particles inside the cabin of cars is investigated and the respirable suspended particles concentration during and after smoking cigarette is predicted in this study. This model is based on mass balance equations. Mechanisms of deposition on the surfaces and the exchange of air in the cabin are considered as sinks for emitted particles. The coagulation is accounted as a sink for smaller particles and as a source for larger particles. The various scenarios of smoking in the cars available in the literature are simulated in this study. Good agreement between the results of the present model and the experimental data, as well as the predictions of other available models, is achieved. The mean respirable suspended particle concentration in different scenarios is estimated and compared with Environmental Protection Agency’s health-based standards in order to specify the situations with respirable suspended particles concentrations exceeding the allowable limits. The results show that the concentration of particles due to the smoke of a single cigarette in a stationary medium sized car with the air conditioner off is 33.6 μg/m3 and nearly reaches the limits appointed by the Environmental Protection Agency for a 24 h incremental exposure (35 μg/m3). Corresponding values for moving cars have also been calculated and compared with the standards.


Air change rate Environmental Protection Agency Mass balance Particle coagulation Particle deposition Resiprable suspended particles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Corner, J.; Pendlebury, E. D., (1951). The coagulation and deposition of a stirred aerosol. In Proc. Phys. Soc. B., 64(8), 645–654 (10 pages).CrossRefGoogle Scholar
  2. Drossinos, Y.; Housiadas, C., (2006). Aerosol flows, In: Crowe, C. T., eds., Multiphase flow handbook, CRC Press, Taylor and Francis Group, Boca Raton, FL.Google Scholar
  3. Engelmann, R. J.; Pendergrass, W. R.; White, J. R.; Hall, M. E., (1992). The effectiveness of stationary automobiles as shelters in accidental releases of toxic materials. Atmos. Environ., 26A(17), 3119–3125 (7 pages).Google Scholar
  4. Fletcher, B.; Saunders, C. G., (1994). Air change rates in stationary and moving motor vehicles. J. Hazard. Mater., 38(2), 243–256 (14 pages).Google Scholar
  5. Fruina, S. A.; Winera, A. M.; Rodes C. E., (2004). Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures. Atmos. Environ., 38(25), 4123–4133 (11 pages).CrossRefGoogle Scholar
  6. Fuchs, N. A., (1964). The Mechanics of Aerosols, Dover Publication Inc., New York.Google Scholar
  7. Gao, N. P.; Niu, J. L., (2007). Modeling particle dispersion and deposition in indoor environments. Atmos. Environ., 41(18), 3862–3876 (15 pages).CrossRefGoogle Scholar
  8. Gelbard, F.; Seinfeld, J. H., (1980). Simulation of multicomponent aerosol dynamics. J. Colloid Interf. Sci., 78(2), 485–501 (17 pages).CrossRefGoogle Scholar
  9. Hosea, M. E.; Shampine, L. F., (1996). Analysis and implementation of TR-BDF2. Appl. Numer. Math., 20(1–2), 21–37 (17 pages).CrossRefGoogle Scholar
  10. Klepeis, N. E.; Ott, W. R.; Switzer, P., (1996). A multiple-smoker model for predicting indoor air quality in public lounges. Environ. Sci. Tech., 30(9), 2813–2820 (8 pages).CrossRefGoogle Scholar
  11. Klepeis, N. E.; Apte, M. G.; Gundel, L. A.; Sextro, R. G.; Nazaroff, W. W., (2003). Determining size specific emission factors for environmental smoke particles. Aerosol Sci. Tech., 37(10), 780–790 (11 pages).CrossRefGoogle Scholar
  12. Klepeis, N. E.; Nazaroff, W. W., (2006). Modeling residential exposure to secondhand tobacco smoke. Atmos. Environ., 40, 4393–4407 (15 pages).CrossRefGoogle Scholar
  13. Knibbs, L. D.; De Dear, R. J.; Atkinson, S. E., (2009). Field study of air change and flow rate in six automobiles. Indoor Air, 19(4), 303–313 (11 pages).CrossRefGoogle Scholar
  14. Lai, A. C. K.; Nazaroff, W. W., (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J. Aerosol Sci., 31(4), 463–476 (4 pages).CrossRefGoogle Scholar
  15. Lai, A.C.K., (2005). Modeling indoor coarse particle deposition onto smooth and rough vertical surfaces. Atmos. Environ., 39(21), 3823–3830 (8 pages).CrossRefGoogle Scholar
  16. Lai, A. C. K.; Nazaroff, W. W., (2005). Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmos. Environ., 39, 4893–4900 (8 pages).CrossRefGoogle Scholar
  17. Lipowicz, P. J., (1988). Determination of cigarette smoke particle density from mass and mobility measurements in a millikan cell. J. Aerosol Sci., 19(5), 587–89 (3 pages).CrossRefGoogle Scholar
  18. Long, C. M.; Suh, H. H.; Catalano, P. J.; Koutrakis, P., (2001). Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ. Sci. Tech., 35, 2089–2099 (11 pages).CrossRefGoogle Scholar
  19. Maskarinec, M. P.; Jenkins, R. A.; Counts, R. W.; Dindal, A. B., (2000). determination of exposure to environmental tobacco smoke in restaurant and tavern workers in one US city. J. Expo. Analys. Environ. Epid., 10, 36–49 (14 pages).CrossRefGoogle Scholar
  20. Miller, S. L.; Nazaroff, W. W., (2001). Environmental tobacco smoke particles in multizone indoor environments. Atmos. Environ., 35, 2053–2067 (15 pages).CrossRefGoogle Scholar
  21. Nazaroff, W. W.; Cass, G. R., (1989). Mathematical modeling of indoor aerosol dynamics. Environ. Sci. Tech., 23(2), 157–166 (10 pages).CrossRefGoogle Scholar
  22. Nazaroff, W. W.; Hung, W. Y.; Sasse, A. G. B. M.; Gadgil, A. J., (1993). Predicting Regional Lung Deposition of Environmental Tobacco Smoke Particles. Aerosol Sci. Tech., 19(3), 243–254 (12 pages).CrossRefGoogle Scholar
  23. Nazaroff, W. W.; Klepeis, N., (2003). Environmental Tobacco Smoke Particles, In: Moraswka, L. and Salthammer, T., eds., Indoor Environment: Airborne Particles, and Settled Dust, Wiley-VCH, Weinheim.Google Scholar
  24. Offermann, F. J.; Sextro, R. G.; Fisk, W. J.; Grimsrud, D. T.; Nazaroff, W. W.; Nero, A. V.; Rezvan, K. L.; Yater, J., (1985). Control of respirable particles in indoor air with portable air cleaners. Atmos. Environ., 19(11), 1761–1771 (11 pages).CrossRefGoogle Scholar
  25. Omidvari, M.; Nouri, J. (2009). Effects of noise pollution on traffic policemen. Int. J. Environ. Res., 3(4), 645–652. (8 pages).Google Scholar
  26. Ott, W. R.; Langan, L.; Switzer, P., (1992). A time series model for cigarette smoking activity patters: model validation for carbon monoxide and respirable particles in an automobile. J. Expo. Analys. Environ. Epid., 2(Suppl. 2), 175–200 (26 pages).Google Scholar
  27. Ott, W. R.; Switzer, P.; Robinson, J., (1996). Particle concentrations inside a tavern before and after prohibition of smoking: Evaluating the performance of an indoor air quality model. J. Air Waste Manage. Assoc., 46, 1120–1134 (15 pages).CrossRefGoogle Scholar
  28. Ott, W. R.; Klepeis, N.; Switzer, P., (2008). Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke. J. Expos. Analys. Environ. Epid., 18(3), 312–325 (14 pages).CrossRefGoogle Scholar
  29. Park, J.; Spengler J. D.; Yoon, D.; Dunnyahn, T.; Lee, K.; Oxkaynak, H., (1998). Measurements of the air exchange rate of stationary vehicles and estimation of in-vehicle exposure. J. Expos. Analys. Environ. Epid., 8(1), 65–78 (14 pages).Google Scholar
  30. Phillips, K.; Howard, D. A.; Bentley, M. C.; Alvan, G., (1998). Measured exposures by personal monitoring for respirable suspended particles and environmental tobacco smoke of housewives and office workers resident in Bremen, Germany. Int. Arch. Occup. Environ. Health, 71(3), 201–212 (12 pages). 764CrossRefGoogle Scholar
  31. Pirjola, L.; Parviainen, H.; Hussein, T.; Valli, A.; Hameri, K.; Aaalto, P.; Virtanen, A.; Keskinen, J.; Pakkanen, T.A.; Makela, T.; Hillamo, R. E., (2004). “Sniffer”—a novel tool for chasing vehicles and measuring traffic pollutants. Atmos. Environ., 38(22), 3625–3635 (11 pages).CrossRefGoogle Scholar
  32. Rees, V. W.; Connolly, G. N., (2006). Measuring air quality to protect children from secondhand smoke in cars. Am. J. Prev. Med., 3(5), 363–368 (6 pages).CrossRefGoogle Scholar
  33. Reinhardt, H.; Kobori, S., (). The different standard test method for cabin air filters in Japan, USA and Europe, In: 5th International Filtration Conference, November 7th–8th, Osaka, Japan.Google Scholar
  34. Repace, J., (2007). Exposure to secondhand smoke, In Ott, W. R., Steinemann, A. C. and Wallace, L. A., Exposure Analysis, CRC Press, Boca Raton, FL, p. 214.Google Scholar
  35. Rodes, C.; Sheldon, L.; Whitaker, D.; Clayton, A.; Fitzgerald, K.; Flanagan, J.; DiGenova, F.; Hering, S.; Frazier, C., (1998). Measuring concentrations of selected air pollutants inside California vehicles, Report prepared for California EPA. (accessed 29 Oct, ).
  36. Salam, M. A.; Shirasuna, Y.; Hirano, K.; Masunaga, S., (2011). Particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of urban and suburban residential area. Int. J. Environ. Sci. Tech., 8(2), 255–266 (12 pages).Google Scholar
  37. Sendzik, T.; Fong, G. T.; Travers, M. J.; Hyland, A., (2009). An Experimental Investigation of Tobacco Smoke Pollution in Cars. Nicotine Tob. Res., 11(6), 627–634 (8 pages).CrossRefGoogle Scholar
  38. Sextro, R. G.; Gross, E.; Nazaroff, W. W., (). Determination of emissions profiles for indoor particle phase environmental tobacco smoke. In: Annual Meeting of the American Association for Aerosol Research, Traverse City, Michigan. Results reported in Nazaroff et al., 1993.Google Scholar
  39. Sohn, M. D.; Apte, M. G.; Sextro, R. G.; Lai, A. C. K., (2007). Predicting size-resolved particle behavior in multizone buildings. Atmos. Environ., 41(7), 1473–1482 (10 pages).CrossRefGoogle Scholar
  40. Tang, U. W.; Wang, Z., (2006). Determining gaseous emission factors and driver’s particle exposures during traffic congestion by vehicle-following measurement techniques. J. Air Waste Manage. Assoc., 56(11),1532–1539 (8 pages).CrossRefGoogle Scholar
  41. Thatcher, T. L.; Lai, A. C. K.; Moreno-Jackson, R.; Sextro, R. G.; Nazaroff, W. W., (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ., 36(11), 1811–1819 (9 pages).CrossRefGoogle Scholar
  42. Xu, M. D.; Nematollahi, M.; Sextro, R.G.; Gadgil, A. J.; Nazaroff, W. W., (1994). Deposition of tobacco smoke particles in a low ventilation room. Aerosol Sci. Tech., 20(2), 194–206 (13 pages).CrossRefGoogle Scholar
  43. Zhao, B.; Wu, J., (2007). Particle deposition in indoor environments: Analysis of influencing factors. J. Hazard. Mater., 147(1–2), 439–448 (10 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations